
MetalK8s Documentation
Release 2.5.2-17-g8d69e5b2c-dirty

Scality

Apr 13, 2021

CONTENTS:

I Installation 1

1 Introduction 5

2 Prerequisites 13

3 Deployment of the Bootstrap node 17

4 Cluster expansion 21

5 Post-Installation Procedure 27

6 Accessing Cluster Services 31

II Operational Guide 33

7 Bootstrap Node Backup and Restoration Procedure 37

8 Enable IP-in-IP encapsulation 39

9 ISO Preparation 41

10 Solutions Guide 43

11 Upgrade Guide 45

12 Downgrade Guide 47

13 Supported Versions 49

14 Downgrade Pre-requisites 51

15 Downgrade Steps 53

16 Changing the hostname of a MetalK8s node 55

17 Volume Management 57

18 Account Administration 65

19 Cluster and Services Configurations 67

20 Cluster Monitoring 73

21 Troubleshooting Guide 77

i

III Developer Guide 81

22 Architecture Documents 83

23 How to build MetalK8s 121

24 How to run components locally 125

25 Development 129

26 Integrating with MetalK8s 141

IV Glossary 153

Index 157

ii

Part I

Installation

1

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

This guide describes how to set up a MetalK8s cluster. It offers general requirements and describes
sizing, configuration, and deployment. It also explains major concepts central to MetalK8s architecture,
and shows how to access various services after completing the setup.

3

https://github.com/scality/metalk8s/

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

4

CHAPTER

ONE

INTRODUCTION

1.1 Foreword

MetalK8s is a Kubernetes distribution with a number of add-ons selected for on-premises deployments,
including pre-configured monitoring and alerting, self-healing system configuration, and more.

Installing a MetalK8s cluster can be broken down into the following steps:

1. Setup of the environment

2. Deployment of the Bootstrap node, the first machine in the cluster

3. Expansion of the cluster, orchestrated from the Bootstrap node

4. Post installation configuration steps and sanity checks

Warning: MetalK8s is not designed to handle world-distributed multi-site architectures. Instead,
it provides a highly resilient cluster at the datacenter scale. To manage multiple sites, look into
application-level solutions or alternatives from such Kubernetes community groups as the Multicluster
SIG).

1.2 Choosing a Deployment Architecture

Before starting the installation, it’s best to choose an architecture.

1.2.1 Standard Architecture

The recommended architecture when installing a small MetalK8s cluster emphasizes ease of installation,
while providing high stability for scheduled workloads. This architecture includes:

• One machine running Bootstrap and control plane services

• Two other machines running control plane and infra services

• Three more machines for workload applications

5

https://kubernetes.io/
https://github.com/kubernetes/community/tree/master/sig-multicluster
https://github.com/kubernetes/community/tree/master/sig-multicluster

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Machines dedicated to the control plane do not require many resources (see the sizing notes below), and
can safely run as virtual machines. Running workloads on dedicated machines makes them simpler to
size, as MetalK8s impact will be negligible.

Note: “Machines” may indicate bare-metal servers or VMs interchangeably.

1.2.2 Extended Architecture

This example architecture focuses on reliability rather than compactness, offering the finest control over
the entire platform:

• One machine dedicated to running Bootstrap services (see the Bootstrap role definition below)

• Three extra machines (or five if installing a really large cluster, e.g. > 100 nodes) for running the
Kubernetes control plane (with core K8s services and the backing etcd DB)

• One or more machines dedicated to running infra services (see the infra role)

• Any number of machines dedicated to running applications, the number and sizing depending on
the application (for instance, Zenko recommends three or more machines)

6 Chapter 1. Introduction

https://kubernetes.io/
https://zenko.io/

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

1.2.3 Compact Architectures

Although its design is not focused on having the smallest compute and memory footprints, MetalK8s
can provide a fully functional single-node “cluster”. The bootstrap node can be configured to also allow
running applications next to all other required services (see the section about taints below).

Because a single-node cluster has no resilience to machine or site failure, a three-machine cluster is the
most compact recommended production architecture. This architecture includes:

• Two machines running control plane services alongside infra and workload applications

• One machine running bootstrap services and all other services

Note: Sizing for such compact clusters must account for the expected load. The exact impact of
colocating an application with MetalK8s services must be evaluated by that application’s provider.

1.2.4 Variations

You can customize your architecture using combinations of roles and taints, described below, to adapt to
the available infrastructure.

Generally, it is easier to monitor and operate well-isolated groups of machines in the cluster, where
hardware issues only impact one group of services.

You can also evolve an architecture after initial deployment, if the underlying infrastructure also evolves
(new machines can be added through the expansion mechanism, roles can be added or removed, etc.).

1.3 Concepts

Although familiarity with Kubernetes concepts is recommended, the necessary concepts to grasp before
installing a MetalK8s cluster are presented here.

1.3.1 Nodes

Nodes are Kubernetes worker machines that allow running containers and can be managed by the cluster
(see control plane services, next section).

1.3. Concepts 7

https://kubernetes.io/docs/concepts/

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

1.3.2 Control and Workload Planes

The distinction between the control and workload planes is central to MetalK8s, and often referred to in
other Kubernetes concepts.

The control plane is the set of machines (called “nodes”) and the services running there that make up the
essential Kubernetes functionality for running containerized applications, managing declarative objects,
and providing authentication/authorization to end users as well as services. The main components of a
Kubernetes control plane are:

• API Server

• Scheduler

• Controller Manager

The workload plane is the set of nodes in which applications are deployed via Kubernetes objects,
managed by services in the control plane.

Note: Nodes may belong to both planes, so that one can run applications alongside the control plane
services.

Control plane nodes often are responsible for providing storage for API Server, by running etcd. This
responsibility may be offloaded to other nodes from the workload plane (without the etcd taint).

1.3.3 Node Roles

A node’s responsibilities are determined using roles. Roles are stored in Node manifests using labels of
the form node-role.kubernetes.io/<role-name>: ''.

MetalK8s uses five different roles, which may be combined freely:

node-role.kubernetes.io/master The master role marks a control plane member. Control plane services
can only be scheduled on master nodes.

node-role.kubernetes.io/etcd The etcd role marks a node running etcd for API Server storage.

node-role.kubernetes.io/infra The infra role is specific to MetalK8s. It marks nodes where non-
critical cluster services (monitoring stack, UIs, etc.) are running.

node-role.kubernetes.io/bootstrap This marks the Bootstrap node. This node is unique in the cluster,
and is solely responsible for the following services:

• An RPM package repository used by cluster members

• An OCI registry for Pod images

• A Salt Master and its associated SaltAPI

In practice, this role is used in conjunction with the master and etcd roles for bootstrapping the
control plane.

In the architecture diagrams presented above, each box represents a role (with the node-role.
kubernetes.io/ prefix omitted).

8 Chapter 1. Introduction

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

1.3.4 Node Taints

Taints are complementary to roles. When a taint or a set of taints is applied to a Node, only Pods with
the corresponding tolerations can be scheduled on that Node.

Taints allow dedicating Nodes to specific use cases, such as running control plane services.

Refer to the architecture diagrams above for examples: each T marker on a role means the taint corre-
sponding to this role has been applied on the Node.

Note that Pods from the control plane services (corresponding to master and etcd roles) have tolerations
for the bootstrap and infra taints. This is because after bootstrapping the first Node, it will be configured
as follows:

The taints applied are only tolerated by services deployed by MetalK8s. If the selected architecture
requires workloads to run on the Bootstrap node, these taints must be removed.

To do this, use the following commands after deployment:

root@bootstrap $ kubectl taint nodes <bootstrap-node-name> \
node-role.kubernetes.io/bootstrap:NoSchedule-

root@bootstrap $ kubectl taint nodes <bootstrap-node-name> \
node-role.kubernetes.io/infra:NoSchedule-

Note: To get more in-depth information about taints and tolerations, see the official Kubernetes docu-
mentation.

1.3. Concepts 9

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

1.3.5 Networks

A MetalK8s cluster requires a physical network for both the control plane and the workload plane Nodes.
Although these may be the same network, the distinction will still be made in further references to these
networks, and when referring to a Node IP address. Each Node in the cluster must belong to these two
networks.

The control plane network enables cluster services to communicate with each other. The workload plane
network exposes applications, including those in infra Nodes, to the outside world.

Todo: Reference Ingress

MetalK8s also enables configuring virtual networks for internal communication:

• A network for Pods, defaulting to 10.233.0.0/16

• A network for Services, defaulting to 10.96.0.0/12

In case of conflicts with existing infrastructure, choose other ranges during Bootstrap configuration.

1.4 Additional Notes

1.4.1 Sizing

Sizing the machines in a MetalK8s cluster depends on the selected architecture and anticipated changes.
Refer to the documentation of the applications planned to run in the deployed cluster before completing
the sizing, as their needs will compete with the cluster’s.

Each role, describing a group of services, requires a certain amount of resources to run properly. If
multiple roles are used on a single Node, these requirements add up.

Role Services CPU RAM Required Storage Recom-
mended
Storage

bootstrap Package repositories,
container registries, Salt
master

1
core

2
GB

Sufficient space for the prod-
uct ISO archives

etcd etcd database for the
K8s API

0.5
core

1
GB

1 GB for /var/lib/etcd

master K8s API, scheduler, and
controllers

0.5
core

1
GB

infra Monitoring services,
Ingress controllers

0.5
core

2
GB

10 GB partition for
Prometheus 1 GB parti-
tion for Alertmanager

require-
mentscommon
toany Node

Salt minion, Kubelet 0.2
core

0.5
GB

40 GB root partition 100 GB or
more for
/var

These numbers do not account for highly unstable workloads or other sources of unpredictable load on
the cluster services. Providing a safety margin of an additional 50% of resources is recommended.

Consider the official recommendations for etcd sizing, as the stability of a MetalK8s installation depends
on the stability of the backing etcd (see the etcd section for more details). Prometheus and Alertmanager
also require storage, as explained in Provision Storage for Prometheus Services.

10 Chapter 1. Introduction

https://github.com/etcd-io/etcd/blob/master/Documentation/op-guide/hardware.md

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

1.4.2 Deploying with Cloud Providers

When installing in a virtual environment, such as AWS EC2 or OpenStack, adjust network configurations
carefully: virtual environments often add a layer of security at the port level, which must be disabled or
circumvented with IP-in-IP encapsulation.

Also note that Kubernetes has numerous integrations with existing cloud providers to provide easier
access to proprietary features, such as load balancers. For more information, review this topic.

1.4. Additional Notes 11

https://aws.amazon.com/ec2/
https://www.openstack.org/
https://kubernetes.io/docs/concepts/cluster-administration/cloud-providers/

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

12 Chapter 1. Introduction

CHAPTER

TWO

PREREQUISITES

MetalK8s clusters require machines running CentOS/RHEL 7.6 or higher as their operating system. These
machines may be virtual or physical, with no difference in setup procedure. The number of machines to
set up depends on the architecture you chose in Choosing a Deployment Architecture.

Machines must not be managed by any configuration management system, such as SaltStack or Puppet.

Warning: The distribution must be left intact as much as possible (do not tune, tweak,
or configure it, or install any software).

2.1 Proxies

For nodes operating behind a proxy, see Configuration.

2.2 Linux Kernel Version

Linux kernels shipped with CentOS/RHEL 7 and earlier are affected by a cgroups memory leak bug.

This bug was fixed in kernel 3.10.0-1062.4.1. Use this kernel version or later.

The version can be retrieved using:

$ uname -r

If the installed version is lower than the one above, upgrade it with:

$ yum upgrade -y kernel-3.10.0-1062.4.1.el7
$ reboot

These commands may require sudo or root access.

2.3 Provisioning

2.3.1 SSH

Each machine must be accessible through SSH from the host. Bootstrap node deployment generates a new
SSH identity for the Bootstrap node and shares it with other nodes in the cluster. You can also do this
manually beforehand.

13

https://github.com/scality/metalk8s
https://www.centos.org
https://access.redhat.com/products/red-hat-enterprise-linux
https://www.saltstack.com
https://puppet.com

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

2.3.2 Network

Each machine must be a member of both the control plane and workload plane networks described in
Networks. However, these networks can overlap, and nodes do not need distinct IP addresses for each
plane.

For the host to reach the cluster-provided UIs, it must be able to connect to the machines’ control plane
IP addresses.

2.3.3 Repositories

Each machine must have properly configured repositories with access to basic repository packages (de-
pending on the operating system).

CentOS:

• base

• extras

• updates

RHEL:

• rhel-7-server-rpms

• rhel-7-server-extras-rpms

• rhel-7-server-optional-rpms

Note: RHEL instances must be registered.

Note: Repository names and configurations do not need to be the same as the official ones, but all
packages must be made available.

To enable an existing repository:

CentOS:

yum-config-manager --enable <repo_name>

RHEL:

subscription-manager repos --enable=<repo_name>

To add a new repository:

yum-config-manager --add-repo <repo_url>

Note: repo_url can be set to a remote URL using the prefix http://, https://, ftp://, etc., or
to a local path using file://.

For more, review the official Red Hat documentation:

• Enable Optional repositories with RHSM

• Configure repositories with YUM

• Advanced repositories configuration

14 Chapter 2. Prerequisites

https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/392003
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sec-configuring_yum_and_yum_repositories#sec-Managing_Yum_Repositories
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sec-configuring_yum_and_yum_repositories#sec-Setting_repository_Options

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

2.3.4 etcd

For production environments, a block device dedicated to etcd is recommended for better performance
and stability. With lower write latency and less variance than spinning disks, SSDs are recommended to
improve reliability.

The device must be formatted and mounted on /var/lib/etcd, on Nodes intended to bear the etcd role.

For more on etcd’s hardware requirements, see the official documentation.

2.3. Provisioning 15

https://etcd.io/docs/v3.3.12/op-guide/hardware

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

16 Chapter 2. Prerequisites

CHAPTER

THREE

DEPLOYMENT OF THE BOOTSTRAP NODE

3.1 Preparation

1. Build the ISO using this procedure. Scality customers can retrieve validated builds as part of their
license from the Scality repositories.

2. Download the MetalK8s ISO file on the machine that will host the bootstrap node. Mount this ISO
file at the specific following path:

root@bootstrap $ mkdir -p /srv/scality/metalk8s-2.5.3-dev
root@bootstrap $ mount <path-to-iso> /srv/scality/metalk8s-2.5.3-dev

3.2 Configuration

1. Create the MetalK8s configuration directory.

root@bootstrap $ mkdir /etc/metalk8s

2. Create the /etc/metalk8s/bootstrap.yaml file. This file contains initial configuration settings
which are mandatory for setting up a MetalK8s Bootstrap node. Change the networks, IP address,
and hostname fields to conform to your infrastructure.

apiVersion: metalk8s.scality.com/v1alpha2
kind: BootstrapConfiguration
networks:

controlPlane: <CIDR-notation>
workloadPlane: <CIDR-notation>
pods: <CIDR-notation>
services: <CIDR-notation>

proxies:
http: <http://proxy-ip:proxy-port>
https: <https://proxy-ip:proxy-port>
no_proxy:
- <host>
- <ip/cidr>

ca:
minion: <hostname-of-the-bootstrap-node>

archives:
- <path-to-metalk8s-iso>

The networks field specifies a range of IP addresses written in CIDR notation for it’s various subfields.

The controlPlane and workloadPlane entries are mandatory. These values specify the range
of IP addresses that will be used at the host level for each member of the cluster.

17

mailto:root@bootstrap
mailto:root@bootstrap

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

networks:
controlPlane: 10.200.1.0/28
workloadPlane: 10.200.1.0/28

All nodes within the cluster must connect to both the control plane and workload plane
networks. If the same network range is chosen for both the control plane and workload
plane networks then the same interface may be used.

The pods and services fields are not mandatory, though can be changed to match the con-
straints of existing networking infrastructure (for example, if all or part of these default
subnets is already routed). During installation, by default pods and services are set to the
following values below if omitted.

For production clusters, we advise users to anticipate future expansions and use sufficiently
large networks for pods and services.

networks:
pods: 10.233.0.0/16
services: 10.96.0.0/12

The proxies field can be omitted if there is no proxy to configure. The 2 entries http and https are used
to configure the containerd daemon proxy to fetch extra container images from outstide the MetalK8s
cluster. The no_proxy entry specifies IPs that should be excluded from proxying, it must be a list of hosts,
IP addresses or IP ranges in CIDR format. For example;

no_proxy:
- localhost
- 127.0.0.1
- 10.10.0.0/16
- 192.168.0.0/16

The archives field is a list of absolute paths to MetalK8s ISO files. When the bootstrap script is executed,
those ISOs are automatically mounted and the system is configured to re-mount them automatically after
a reboot.

3.3 SSH Provisioning

1. Prepare the MetalK8s PKI directory.

root@bootstrap $ mkdir -p /etc/metalk8s/pki

2. Generate a passwordless SSH key that will be used for authentication to future new nodes.

root@bootstrap $ ssh-keygen -t rsa -b 4096 -N '' -f /etc/metalk8s/pki/salt-bootstrap

Warning: Although the key name is not critical (will be re-used afterwards, so make sure
to replace occurences of salt-bootstrap where relevant), this key must exist in the /etc/
metalk8s/pki directory.

3. Accept the new identity on future new nodes (run from your host).

1. Retrieve the public key from the Bootstrap node.

user@host $ scp root@bootstrap:/etc/metalk8s/pki/salt-bootstrap.pub /tmp/salt-bootstrap.
→˓pub

18 Chapter 3. Deployment of the Bootstrap node

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

2. Authorize this public key on each new node (this command assumes a functional SSH access
from your host to the target node). Repeat until all nodes accept SSH connections from the
Bootstrap node.

user@host $ ssh-copy-id -i /tmp/salt-bootstrap.pub root@<node_hostname>

3.4 Installation

3.4.1 Run the Installation

Run the bootstrap script to install binaries and services required on the Bootstrap node.

root@bootstrap $ /srv/scality/metalk8s-2.5.3-dev/bootstrap.sh

Warning: For virtual networks (or any network which enforces source and destination fields of IP
packets to correspond to the MAC address(es)), IP-in-IP needs to be enabled.

3.4.2 Validate the install

• Check that all Pods on the Bootstrap node are in the Running state. Note that Prometheus and
Alertmanager pods will remain in a Pending state until their respective persistent storage volumes
are provisioned.

Note: The administrator kubeconfig file is used to configure access to Kubernetes when used with kubectl
as shown below. This file contains sensitive information and should be kept securely.

On all subsequent kubectl commands, you may omit the --kubeconfig argument if you have exported
the KUBECONFIG environment variable set to the path of the administrator kubeconfig file for the cluster.

By default, this path is /etc/kubernetes/admin.conf.

root@bootstrap $ export KUBECONFIG=/etc/kubernetes/admin.conf

root@bootstrap $ kubectl get nodes --kubeconfig /etc/kubernetes/admin.conf
NAME STATUS ROLES AGE VERSION
bootstrap Ready bootstrap,etcd,infra,master 17m v1.15.5

root@bootstrap $ kubectl get pods --all-namespaces -o wide --kubeconfig /etc/kubernetes/admin.conf
NAMESPACE NAME READY STATUS ␣
→˓RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
kube-system calico-kube-controllers-7c9944c5f4-h9bsc 1/1 Running 0␣
→˓ 6m29s 10.233.220.129 bootstrap <none> <none>
kube-system calico-node-v4qhb 1/1 Running 0␣
→˓ 6m29s 10.200.3.152 bootstrap <none> <none>
kube-system coredns-ff46db798-k54z9 1/1 Running 0␣
→˓ 6m29s 10.233.220.134 bootstrap <none> <none>
kube-system coredns-ff46db798-nvmjl 1/1 Running 0␣
→˓ 6m29s 10.233.220.132 bootstrap <none> <none>
kube-system etcd-bootstrap 1/1 Running 0␣
→˓ 5m45s 10.200.3.152 bootstrap <none> <none>
kube-system kube-apiserver-bootstrap 1/1 Running 0␣
→˓ 5m57s 10.200.3.152 bootstrap <none> <none>
kube-system kube-controller-manager-bootstrap 1/1 Running 0␣
→˓ 7m4s 10.200.3.152 bootstrap <none> <none>
kube-system kube-proxy-n6zgk 1/1 Running 0␣
→˓ 6m32s 10.200.3.152 bootstrap <none> <none> (continues on next page)

3.4. Installation 19

mailto:root@bootstrap

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

(continued from previous page)

kube-system kube-scheduler-bootstrap 1/1 Running 0␣
→˓ 7m4s 10.200.3.152 bootstrap <none> <none>
kube-system repositories-bootstrap 1/1 Running 0␣
→˓ 6m20s 10.200.3.152 bootstrap <none> <none>
kube-system salt-master-bootstrap 2/2 Running 0␣
→˓ 6m10s 10.200.3.152 bootstrap <none> <none>
kube-system storage-operator-7567748b6d-hp7gq 1/1 Running 0␣
→˓ 6m6s 10.233.220.138 bootstrap <none> <none>
metalk8s-ingress nginx-ingress-control-plane-controller-5nkkx 1/1 Running 0␣
→˓ 6m6s 10.233.220.137 bootstrap <none> <none>
metalk8s-ingress nginx-ingress-controller-shg7x 1/1 Running 0␣
→˓ 6m7s 10.233.220.135 bootstrap <none> <none>
metalk8s-ingress nginx-ingress-default-backend-7d8898655c-jj7l6 1/1 Running 0␣
→˓ 6m7s 10.233.220.136 bootstrap <none> <none>
metalk8s-monitoring alertmanager-prometheus-operator-alertmanager-0 0/2 Pending 0␣
→˓ 6m1s <none> <none> <none> <none>
metalk8s-monitoring prometheus-operator-grafana-775fbb5b-sgngh 2/2 Running 0␣
→˓ 6m17s 10.233.220.130 bootstrap <none> <none>
metalk8s-monitoring prometheus-operator-kube-state-metrics-7587b4897c-tt79q 1/1 Running 0␣
→˓ 6m17s 10.233.220.131 bootstrap <none> <none>
metalk8s-monitoring prometheus-operator-operator-7446d89644-zqdlj 1/1 Running 0␣
→˓ 6m17s 10.233.220.133 bootstrap <none> <none>
metalk8s-monitoring prometheus-operator-prometheus-node-exporter-rb969 1/1 Running 0␣
→˓ 6m17s 10.200.3.152 bootstrap <none> <none>
metalk8s-monitoring prometheus-prometheus-operator-prometheus-0 0/3 Pending 0␣
→˓ 5m50s <none> <none> <none> <none>
metalk8s-ui metalk8s-ui-6f74ff4bc-fgk86 1/1 Running 0␣
→˓ 6m4s 10.233.220.139 bootstrap <none> <none>

• From the console output above, Prometheus and Alertmanager pods are in a Pending state because
their respective persistent storage volumes need to be provisioned. To provision these persistent
storage volumes, follow this procedure.

• Check that you can access the MetalK8s GUI after the installation is completed by following this
procedure.

• At this stage, the MetalK8s GUI should be up and ready for you to explore.

Note: Monitoring through the MetalK8s GUI will not be available until persistent storage volumes
for both Prometheus and Alertmanager have been successfully provisioned.

• If you encouter an error during installation or have difficulties validating a fresh MetalK8s installa-
tion, visit our Troubleshooting guide.

20 Chapter 3. Deployment of the Bootstrap node

CHAPTER

FOUR

CLUSTER EXPANSION

Once the Bootstrap node has been installed (see Deployment of the Bootstrap node), the cluster can be
expanded. Unlike the kubeadm join approach which relies on bootstrap tokens and manual operations
on each node, MetalK8s uses Salt SSH to setup new Nodes through declarative configuration, from a
single entrypoint. This operation can be done either through the MetalK8s GUI or the command-line.

4.1 Defining an Architecture

Follow the recommendations provided in the introduction to choose an architecture.

List the machines to deploy and their associated roles, and deploy each of them using the following
process, either from the GUI or CLI. Note however, that the finest control over roles and taints can only
be achieved using the command-line.

4.2 Adding a Node with the MetalK8s GUI

To reach the UI, refer to this procedure.

4.2.1 Creating a Node Object

The first step to adding a Node to a cluster is to declare it in the API. The MetalK8s GUI provides a simple
form for that purpose.

1. Navigate to the Node list page, by clicking the button in the sidebar:

21

https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm-join/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping/

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

2. From the Node list (the Bootstrap node should be visible there), click the button labeled “Create a
New Node”:

3. Fill the form with relevant information (make sure the SSH provisioning for the Bootstrap node is
done first):

• Name: the hostname of the new Node

• SSH User: the user for which the Bootstrap has SSH access

• Hostname or IP: the address to use for SSH from the Bootstrap

• SSH Port: the port to use for SSH from the Bootstrap

• SSH Key Path: the path to the private key generated in this procedure

• Sudo required: whether the SSH deployment will need sudo access

22 Chapter 4. Cluster expansion

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

• Roles/Workload Plane: enable any workload applications run on this Node

• Roles/Control Plane: enable master and etcd services run on this Node

• Roles/Infra: enable infra services run on this Node

Note: Combination of multiple roles is possible: Selecting Workload Plane and Infra checkbox
will result in infra services and workload applications run on this Node.

4. Click Create. You will be redirected to the Node list page, and will be shown a notification to
confirm the Node creation:

4.2.2 Deploying the Node

After the desired state has been declared, it can be applied to the machine. The MetalK8s GUI uses
SaltAPI to orchestrate the deployment.

1. From the Node list page, click the Deploy button for any Node that has not yet been deployed.

Once clicked, the button changes to Deploying. Click it again to open the deployment status page:

Detailed events are shown on the right of this page, for advanced users to debug in case of errors.

4.2. Adding a Node with the MetalK8s GUI 23

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Todo:

• UI should parse these events further

• Events should be documented

2. When deployment is complete, click Back to nodes list. The new Node should be in a Ready state.

Todo:

• troubleshooting (example errors)

4.3 Adding a Node from the Command-line

4.3.1 Creating a Manifest

Adding a node requires the creation of a manifest file, following the template below:

apiVersion: v1
kind: Node
metadata:
name: <node_name>
annotations:
metalk8s.scality.com/ssh-key-path: /etc/metalk8s/pki/salt-bootstrap
metalk8s.scality.com/ssh-host: <node control plane IP>
metalk8s.scality.com/ssh-sudo: 'false'

labels:
metalk8s.scality.com/version: '2.5.3-dev'
<role labels>

spec:
taints: <taints>

The combination of <role labels> and <taints> will determine what is installed and deployed on the
Node.

roles determine a Node responsibilities. taints are complementary to roles.

• A node exclusively in the control plane with etcd storage

roles and taints both are set to master and etcd. It has the same behavior as the Control Plane
checkbox in the GUI.

[. . .]
metadata:
[. . .]
labels:

node-role.kubernetes.io/master: ''
node-role.kubernetes.io/etcd: ''
[. . . (other labels except roles)]

spec:
[. . .]
taints:
- effect: NoSchedule

key: node-role.kubernetes.io/master
- effect: NoSchedule

key: node-role.kubernetes.io/etcd

• A worker node dedicated to infra services (see Introduction)

24 Chapter 4. Cluster expansion

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

roles and taints both are set to infra. It has the same behavior as the Infra checkbox in the GUI.

[. . .]
metadata:
[. . .]
labels:

node-role.kubernetes.io/infra: ''
[. . . (other labels except roles)]

spec:
[. . .]
taints:
- effect: NoSchedule

key: node-role.kubernetes.io/infra

• A simple worker still accepting infra services would use the same role label without the taint

roles are set to node and infra. It’s the same as the checkbox of Workload Plane and Infra in
MetalK8s GUI.

4.3.2 CLI-only actions

• A Node dedicated to etcd

roles and taints both are set to etcd.

[. . .]
metadata:
[. . .]
labels:

node-role.kubernetes.io/etcd: ''
[. . . (other labels except roles)]

spec:
[. . .]
taints:
- effect: NoSchedule

key: node-role.kubernetes.io/etcd

4.3.3 Creating the Node Object

Use kubectl to send the manifest file created before to Kubernetes API.

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf apply -f <path-to-node-manifest>
node/<node-name> created

Check that it is available in the API and has the expected roles.

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf get nodes
NAME STATUS ROLES AGE VERSION
bootstrap Ready bootstrap,etcd,infra,master 12d v1.11.7
<node-name> Unknown <expected node roles> 29s

4.3. Adding a Node from the Command-line 25

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

4.3.4 Deploying the Node

Open a terminal in the Salt Master container using this procedure.

1. Check that SSH access from the Salt Master to the new node is properly configured (see SSH
Provisioning).

root@salt-master-bootstrap $ salt-ssh --roster kubernetes <node-name> test.ping
<node-name>:

True

2. Start the node deployment.

root@salt-master-bootstrap $ salt-run state.orchestrate metalk8s.orchestrate.deploy_
→˓node \

saltenv=metalk8s-2.5.3-dev \
pillar='{"orchestrate": {"node_name": "<node-name>"}}'

... lots of output ...
Summary for bootstrap_master

Succeeded: 7 (changed=7)
Failed: 0

Total states run: 7
Total run time: 121.468 s

Todo: Troubleshooting section

• explain orchestrate output and how to find errors

• point to log files

4.4 Checking Cluster Health

During the expansion, it is recommended to check the cluster state between each node addition.

When expanding the control plane, one can check the etcd cluster health:

root@bootstrap $ kubectl -n kube-system exec -ti etcd-bootstrap sh --kubeconfig /etc/kubernetes/
→˓admin.conf
root@etcd-bootstrap $ etcdctl --endpoints=https://[127.0.0.1]:2379 \

--ca-file=/etc/kubernetes/pki/etcd/ca.crt \
--cert-file=/etc/kubernetes/pki/etcd/healthcheck-client.crt \
--key-file=/etc/kubernetes/pki/etcd/healthcheck-client.key \
cluster-health

member 46af28ca4af6c465 is healthy: got healthy result from https://172.21.254.6:2379
member 81de403db853107e is healthy: got healthy result from https://172.21.254.7:2379
member 8878627efe0f46be is healthy: got healthy result from https://172.21.254.8:2379
cluster is healthy

Todo:

• add sanity checks for Pods lists (also in the relevant sections in services)

26 Chapter 4. Cluster expansion

mailto:root@salt\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{}master\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{}bootstrap

CHAPTER

FIVE

POST-INSTALLATION PROCEDURE

5.1 Provision Storage for Prometheus Services

After bootstrapping the cluster, the Prometheus and AlertManager services used to monitor the system
will not be running (the respective Pods will remain in Pending state), because they require persistent
storage to be available.

You can either provision these storage volumes on the Bootstrap node, or later on other nodes joining the
cluster. It is even recommended to separate Bootstrap services from Infra services.

To create the required Volume objects, write a YAML file with the following contents, replac-
ing <node_name> with the name of the Node on which to run Prometheus and AlertManager, and
<device_path[2]> with the /dev path for the partitions to use:

apiVersion: storage.metalk8s.scality.com/v1alpha1
kind: Volume
metadata:
name: <node_name>-prometheus

spec:
nodeName: <node_name>
storageClassName: metalk8s-prometheus
rawBlockDevice: # Choose a device with at least 10GiB capacity

devicePath: <device_path>
template:

metadata:
labels:

app.kubernetes.io/name: 'prometheus-operator-prometheus'

apiVersion: storage.metalk8s.scality.com/v1alpha1
kind: Volume
metadata:
name: <node_name>-alertmanager

spec:
nodeName: <node_name>
storageClassName: metalk8s-prometheus
rawBlockDevice: # Choose a device with at least 1GiB capacity

devicePath: <device_path2>
template:

metadata:
labels:

app.kubernetes.io/name: 'prometheus-operator-alertmanager'

Once this file is created with the right values filled in, run the following command to create the Volume
objects (replacing <file_path> with the path of the aforementioned YAML file):

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
apply -f <file_path>

27

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

For more details on the available options for storage management, see this section of the Operational
Guide.

Todo:

• Sanity check

• Troubleshooting if needed

5.2 Changing credentials

After a fresh installation, an administrator account is created with default credentials. For production
deployments, make sure to change those credentials and use safer values.

To change user credentials and groups for K8s API (and as such, for MetalK8s GUI and SaltAPI), follow
this procedure.

To change Grafana user credentials, follow this procedure.

5.3 Validating the deployment

To ensure the Kubernetes cluster is properly running before scheduling applications, perform the follow-
ing sanity checks:

1. Check that all desired Nodes are in a Ready state and show the expected roles:

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
get nodes

NAME STATUS ROLES AGE VERSION
bootstrap Ready bootstrap,etcd,infra,master 42m v1.15.5
node-1 Ready etcd,infra,master 26m v1.15.5
node-2 Ready etcd,infra,master 25m v1.15.5

Use the kubectl describe node <node_name> to get more details about a Node (for instance, to
check the right taints are applied).

2. Check that Pods are in their expected state (most of the time, Running, except for Prometheus and
AlertManager if the required storage was not provisioned yet - see the procedure above).

To look for all Pods at once, use the --all-namespaces flag. On the other hand, use the -n or
--namespace option to select Pods in a given Namespace.

For instance, to check all Pods making up the cluster-critical services:

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
get pods --namespace kube-system

NAME READY STATUS RESTARTS AGE
apiserver-proxy-bootstrap 1/1 Running 0 43m
apiserver-proxy-node-1 1/1 Running 0 2m28s
apiserver-proxy-node-2 1/1 Running 0 9m
calico-kube-controllers-6d8db9bcf5-w5w94 1/1 Running 0 43m
calico-node-4vxpp 1/1 Running 0 43m
calico-node-hvlkx 1/1 Running 7 23m
calico-node-jhj4r 1/1 Running 0 8m59s
coredns-8576b4bf99-lfjfc 1/1 Running 0 43m
coredns-8576b4bf99-tnt6b 1/1 Running 0 43m
etcd-bootstrap 1/1 Running 0 43m
etcd-node-1 1/1 Running 0 3m47s

(continues on next page)

28 Chapter 5. Post-Installation Procedure

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

(continued from previous page)

etcd-node-2 1/1 Running 3 8m58s
kube-apiserver-bootstrap 1/1 Running 0 43m
kube-apiserver-node-1 1/1 Running 0 2m45s
kube-apiserver-node-2 1/1 Running 0 7m31s
kube-controller-manager-bootstrap 1/1 Running 3 44m
kube-controller-manager-node-1 1/1 Running 1 2m39s
kube-controller-manager-node-2 1/1 Running 2 7m25s
kube-proxy-gnxtp 1/1 Running 0 28m
kube-proxy-kvtjm 1/1 Running 0 43m
kube-proxy-vggzg 1/1 Running 0 27m
kube-scheduler-bootstrap 1/1 Running 1 44m
kube-scheduler-node-1 1/1 Running 0 2m39s
kube-scheduler-node-2 1/1 Running 0 7m25s
repositories-bootstrap 1/1 Running 0 44m
salt-master-bootstrap 2/2 Running 0 44m
storage-operator-756b87c78f-mjqc5 1/1 Running 1 43m

3. Using the result of the above command, obtain a shell in a running etcd Pod (replacing
<etcd_pod_name> with the appropriate value):

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
exec --namespace kube-system -it <etcd_pod_name> sh

Once in this shell, use the following to obtain health information for the etcd cluster:

root@etcd-bootstrap $ etcdctl --endpoints=https://[127.0.0.1]:2379 \
--ca-file=/etc/kubernetes/pki/etcd/ca.crt \
--cert-file=/etc/kubernetes/pki/etcd/healthcheck-client.crt \
--key-file=/etc/kubernetes/pki/etcd/healthcheck-client.key \
cluster-health

member 46af28ca4af6c465 is healthy: got healthy result from https://<first-node-ip>:2379
member 81de403db853107e is healthy: got healthy result from https://<second-node-ip>:2379
member 8878627efe0f46be is healthy: got healthy result from https://<third-node-ip>:2379
cluster is healthy

4. Finally, check that the exposed services are accessible, using the information from this document.

5.3. Validating the deployment 29

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

30 Chapter 5. Post-Installation Procedure

CHAPTER

SIX

ACCESSING CLUSTER SERVICES

6.1 MetalK8s GUI

This GUI is deployed during the Bootstrap installation, and can be used for operating, extending and
upgrading a MetalK8s cluster.

6.1.1 Gather Required Information

Get the control plane IP of the bootstrap node.

root@bootstrap $ salt-call grains.get metalk8s:control_plane_ip
local:

<the control plane IP>

6.1.2 Use MetalK8s UI

Once you have gathered the IP address and the port number, open your web browser and navigate to the
URL https://<ip>:8443, replacing placeholders with the values retrieved before.

The login page is loaded, and should resemble the following:

Log in with the default login / password (admin@metalk8s.invalid / password).

31

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Note: To change the default password as provided above, refer to this procedure.

The landing page should look like this:

This page displays two monitoring indicators:

1. the Cluster Status, which evaluates if control plane services are all up and running

2. the list of alerts stored in Alertmanager.

6.2 Grafana

Grafana is available on the same host as the MetalK8s UI, under /grafana. Log in with the default
credentials: admin@metalk8s.invalid / password.

6.3 Salt

MetalK8s uses SaltStack to manage the cluster. The Salt Master runs in a Pod on the Bootstrap node.

The Pod name is salt-master-<bootstrap hostname>, and it contains two containers: salt-master and
salt-api.

To interact with the Salt Master with the usual CLIs, open a terminal in the salt-master container
(assuming the Bootstrap hostname to be bootstrap):

root@bootstrap $ kubectl exec -it -n kube-system -c salt-master \
--kubeconfig /etc/kubernetes/admin.conf \
salt-master-bootstrap bash

Todo:

• how to access / use SaltAPI

• how to get logs from these containers

32 Chapter 6. Accessing Cluster Services

https://www.saltstack.com/

Part II

Operational Guide

33

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

This guide describes MetalK8s ISO preparation steps, upgrade and downgrade guidelines, supported
versions and best practices required for operating MetalK8s. Refer to the Installation if you do not have
a working MetalK8s setup.

35

https://github.com/scality/metalk8s/
https://github.com/scality/metalk8s/

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

36

CHAPTER

SEVEN

BOOTSTRAP NODE BACKUP AND RESTORATION PROCEDURE

This section describes how to backup a MetalK8s bootstrap node and how to restore a bootstrap node
from such backup.

7.1 Backup procedure

A backup file is generated at the end of the bootstrap.

To create a new backup file you can run the following command:

/srv/scality/metalk8s-X.X.X/backup.sh

Backup archives are stored in /var/lib/metalk8s/.

7.2 Restoration procedure

Warning: It is mandatory to have a highly available control plane, with at least 3 members in the
etcd cluster (including the failed bootstrap Node), to use the restore script.

Before running the script, the unreachable etcd member needs to be unregistered from the cluster. To
do so, run the following commands from a working Node with the etcd role:

Get etcd container id
CONT_ID=$(crictl ps -q --label io.kubernetes.container.name=etcd --state Running)

List all etcd members to get the ID of the etcd member that need to be removed
crictl exec -it "$CONT_ID" \

etcdctl --endpoints https://localhost:2379 \
--ca-file /etc/kubernetes/pki/etcd/ca.crt \
--key-file /etc/kubernetes/pki/etcd/server.key \
--cert-file /etc/kubernetes/pki/etcd/server.crt \
member list

Remove the etcd member (replace <etcd_id> in the command)
crictl exec -it "$CONT_ID" \

etcdctl --endpoints https://localhost:2379 \
--ca-file /etc/kubernetes/pki/etcd/ca.crt \
--key-file /etc/kubernetes/pki/etcd/server.key \
--cert-file /etc/kubernetes/pki/etcd/server.crt \
member remove <etcd_id>

Since multiple bootstrap nodes are not supported for the moment, the old bootstrap Node needs to be
removed before performing the restoration. To do so, run the following commands from a working Node
with master role:

37

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

List all nodes to get the node name of the old bootstrap node that need
to get removed
kubectl get node --selector="node-role.kubernetes.io/bootstrap" \

--kubeconfig=/etc/kubernetes/admin.conf

Remove the old bootstrap node (replace <node_name> in the command)
kubectl delete node <node_name> --kubeconfig=/etc/kubernetes/admin.conf

To restore a bootstrap node you need a backup archive and MetalK8s ISOs.

All the ISOs referenced in the bootstrap configuration file (located at /etc/metalk8s/bootstrap.yaml) must
be present.

First mount the ISO and then run the restore script:

/srv/scality/metalk8s-X.X.X/restore.sh --backup-file <backup_archive> --apiserver-node-ip <node_ip>

Note: Replace <backup_archive> with the path to the backup archive you want to use and <node_ip>
with a control-plane IP of one control-plane Node.

38 Chapter 7. Bootstrap Node Backup and Restoration Procedure

CHAPTER

EIGHT

ENABLE IP-IN-IP ENCAPSULATION

By default Calico in MetalK8s is configured to use IP-in-IP encapsulation only for cross-subnet communi-
cation.

IP-in-IP is needed for any network which enforces source and destination fields of IP packets to corre-
spond to the MAC address(es).

To always use IP-in-IP encapsulation run the following command:

$ kubectl --kubeconfig /etc/kubernetes/admin.conf \
patch ippool default-ipv4-ippool --type=merge \
--patch '{"spec": {"ipipMode": "Always"}}'

For more details refer to IP-in-IP Calico configuration.

39

https://docs.projectcalico.org/
https://en.wikipedia.org/wiki/IP_in_IP
https://en.wikipedia.org/wiki/IP_in_IP
https://en.wikipedia.org/wiki/IP_in_IP
https://docs.projectcalico.org/v3.7/networking/vxlan-ipip

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

40 Chapter 8. Enable IP-in-IP encapsulation

CHAPTER

NINE

ISO PREPARATION

This section describes a reliable way for provisioning a new MetalK8s ISO for upgrade or downgrade.

To provision a new Metalk8s ISO you need to run the utility script shipped with the current installation:

/srv/scality/metalk8s-X.X.X/iso-manager.sh -a <path_to_iso>

41

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

42 Chapter 9. ISO Preparation

CHAPTER

TEN

SOLUTIONS GUIDE

To deploy a Solution in a MetalK8s cluster, a utility script is provided. This section describes, step by
step, how to deploy a Solution using this tool, located at the root of MetalK8s archive:

/srv/scality/metalk8s-2.5.3-dev/solutions.sh

10.1 Import a Solution

First, the Solution must be imported in the cluster (make the container images available through the
cluster registry):

./solutions.sh import --archive </path/to/solution.iso>

10.2 Activate a Solution Version

Only one version of a Solution can be active at any point in time. An active Solution version provides the
cluster-wide resources, such as CRDs, to all other versions of this Solution. To activate a version, run:

./solutions.sh activate --name <solution-name> --version <solution-version>

10.3 Environment Creation

Solutions are meant to be deployed in isolated namespaces, which we call Environments. To create an
Environment, run:

./solutions.sh create-env --name <environment-name>

10.4 Adding a Solution Version to an Environment

Solutions are packaged with an Operator, and optionally an associated web UI, to provide all required
domain-specific logic. To deploy a Solution Operator and its UI in an Environment, run:

./solutions.sh add-solution --name <environment-name> \
--solution <solution-name> --version <solution-version>

43

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

10.5 Configure a Solution

The Solution Operator and UI (if any) are now deployed. To finalize deployment and configuration of
the Solution application, please refer to its documentation.

44 Chapter 10. Solutions Guide

CHAPTER

ELEVEN

UPGRADE GUIDE

Upgrading a MetalK8s cluster is handled via utility scripts which are packaged with every new release.
This section describes a reliable upgrade procedure for MetalK8s including all the components that are
included in the stack.

11.1 Supported Versions

Note: MetalK8 supports upgrade strictly from one supported minor version to another. For example:

• Upgrade from 2.0.x to 2.0.x

• Upgrade from 2.0.x to 2.1.x

Please refer to the release notes for more information.

11.2 Upgrade Pre-requisites

Before proceeding with the upgrade procedure, make sure to complete the pre-requisites listed in ISO
Preparation.

11.2.1 Run pre-check

You can test if your environment will successfully upgrade with the following command. This will simu-
late the upgrade prechecks and provide an overview of the changes to be carried out in your MetalK8s
cluster.

Important:

The version prefix metalk8s-X.X.X as used below during a MetalK8s upgrade must be the new
MetalK8s version you would like to upgrade to.

/srv/scality/metalk8s-X.X.X/upgrade.sh --destination-version \
<destination_version> --dry-run --verbose

45

https://github.com/scality/metalk8s/releases

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

11.2.2 Backup old credentials

Starting 2.5.0, MetalK8s will henceforth implement OpenID Connect (OIDC) based authentication. Both
K8s and Grafana will be configured to make use of the same OIDC provider.

Warning: Before running an upgrade from 2.4.x to 2.5.0 or higher, MetalK8s administrators must
ensure all static users defined in /etc/kubernetes/htpasswd can be recreated, and if any, all users
that were defined in Grafana. The upgrade procedure will result in all admin credentials being reset
to their default values, and any additional user being removed. MetalK8s administrators need to
remember and reconfigure these username/password pairs.

After upgrade is complete, a procedure for configuring the OIDC provider (Dex) user store will be
provided in the next version.

11.3 Upgrade Steps

Ensure that the upgrade pre-requisites above have been met before you make any step further.

To upgrade a MetalK8s cluster, run the utility script shipped with the new version you want to upgrade
to providing it with the destination version:

Important: The version prefix metalk8s-X.X.X as used below during a MetalK8s upgrade must be the
new MetalK8s version you would like to upgrade to.

• From the Bootstrap node, launch the upgrade.

/srv/scality/metalk8s-X.X.X/upgrade.sh --destination-version <destination_version>

46 Chapter 11. Upgrade Guide

CHAPTER

TWELVE

DOWNGRADE GUIDE

Downgrading a MetalK8s cluster is handled via utility scripts which are packaged with your current
installation. This section describes a reliable downgrade procedure for MetalK8s including all the com-
ponents that are included in the stack.

47

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

48 Chapter 12. Downgrade Guide

CHAPTER

THIRTEEN

SUPPORTED VERSIONS

Note: MetalK8 supports downgrade strictly from one supported minor version to another. For example:

• Downgrade from 2.1.x to 2.0.x

• Downgrade from 2.2.x to 2.1.x

Please refer to the release notes for more information.

49

https://github.com/scality/metalk8s/releases

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

50 Chapter 13. Supported Versions

CHAPTER

FOURTEEN

DOWNGRADE PRE-REQUISITES

Before proceeding with the downgrade procedure, make sure to complete the pre-requisites listed in ISO
Preparation.

14.1 Run pre-check

You can test if your environment will successfully downgrade with the following command. This will
simulate the downgrade prechecks and provide an overview of the changes to be carried out in your
MetalK8s cluster.

Important:

The version prefix metalk8s-X.X.X as used below during a MetalK8s downgrade must be the
currently-installed MetalKs8 version.

/srv/scality/metalk8s-X.X.X/downgrade.sh --destination-version \
<destination_version> --dry-run --verbose

51

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

52 Chapter 14. Downgrade Pre-requisites

CHAPTER

FIFTEEN

DOWNGRADE STEPS

Ensure that the downgrade pre-requisites above have been met before you make any step further.

15.1 Saltstack downgrade (only needed for 2.4.0, 2.4.1, 2.4.2, 2.4.3, or
2.5.0)

When downgrading MetalK8s to 2.4.0, 2.4.1, 2.4.2, 2.4.3, or 2.5.0 you first need to downgrade Salt
minions manually, if you downgrade to another version then you can skip this section.

Warning: MetalK8s 2.4.0, 2.4.1, 2.4.2, 2.4.3, and 2.5.0 use Salt version 2018.3.4 that has two
known dangerous CVE (CVE-2020-11651, CVE-2020-11652) , downgrade to these versions only if
it’s mandatory.

1. Go inside the Salt-master container

kubectl --kubeconfig=/etc/kubernetes/admin.conf exec -it \
$(kubectl --kubeconfig=/etc/kubernetes/admin.conf get pods \

--namespace kube-system \
--selector "app.kubernetes.io/name=salt-master" \
--field-selector=status.phase=Running \
--output jsonpath='{.items[*].metadata.name}') \

--namespace kube-system -c salt-master -- bash

2. Sync all Salt modules to MetalK8s destination version

salt '*' saltutil.sync_all saltenv=metalk8s-<version>

3. Configure repositories to make packages available

salt '*' state.sls metalk8s.repo saltenv=metalk8s-<version>

4. Downgrade Salt minions

salt '*' state.single pkg.installed salt \
pkgs="[{'salt-minion': '2018.3.4'}, {'salt': '2018.3.4'}]" \
hold=True update_holds=True --timeout=200

5. Check that every Salt minions run with 2018.3.4

Note: Master downgrade is handled by the utility script in the next section

salt-run manage.versions

6. Leave the Salt-master container

53

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11651
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11652

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

exit

15.2 MetalK8s downgrade

To downgrade a MetalK8s cluster, run the utility script shipped with the current installation providing it
with the destination version:

Important: The version prefix metalk8s-X.X.X as used below during a MetalK8s downgrade must be
the currently-installed MetalKs8 version.

• From the Bootstrap node, launch the downgrade.

/srv/scality/metalk8s-X.X.X/downgrade.sh --destination-version <version>

54 Chapter 15. Downgrade Steps

CHAPTER

SIXTEEN

CHANGING THE HOSTNAME OF AMETALK8S NODE

1. On the node, change the hostname:

$ hostnamectl set-hostname <New hostname>
$ systemctl restart systemd-hostnamed

2. Check that the change is taken into account.

$ hostnamectl status

Static hostname: <New hostname>
Pretty hostname: <New hostname>

Icon name: computer-vm
Chassis: vm

Machine ID: 5003025f93c1a84914ea5ae66519c100
Boot ID: f28d5c64f06c48a3a775e24c4f03d00c
Virtualization: kvm

Oerating System: CentOS Linux 7 (Core)
CPE OS Name: cpe:/o:centos:centos:7

Kernel: Linux 3.10.0-957.12.2.el7.x86_64
Architecture: x86-64

3. On the bootstrap node, check the hostname edition incurred a change of status on the bootstrap.
The edited node must be in a NotReady status.

$ kubectl get <node_name>
<node_name> NotReady etcd,master 19h v1.11.7

4. Change the name of the node in the yaml file used to create it. Refer to Creating a Manifest for
more information.

apiVersion: v1
kind: Node
metadata:
name: <New_node_name>
annotations:
metalk8s.scality.com/ssh-key-path: /etc/metalk8s/pki/salt-bootstrap
metalk8s.scality.com/ssh-host: <node control-plane IP>
metalk8s.scality.com/ssh-sudo: 'false'

labels:
metalk8s.scality.com/version: '2.5.3-dev'
<role labels>

spec:
taints: <taints>

Then apply the configuration:

$ kubectl apply -f <path to edited manifest>

5. Delete the old node (here <node_name>):

55

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

$ kubectl delete node <node_name>

6. Open a terminal into the Salt master container:

$ kubectl -it exec salt-master-<bootstrap_node_name> -n kube-system -c salt-master bash

7. Delete the now obsolete Salt minion key for the changed Node:

$ salt-key -d <node_name>

8. Re-run the deployment for the edited Node:

$ salt-run state.orchestrate metalk8s.orchestrate.deploy_node saltenv=metalk8s-2.5.
→˓3-dev pillar='{"orchestrate": {"node_name": "<new-node-name>"}}'

Summary for bootstrap_master

Succeeded: 11 (changed=9)
Failed: 0

Total states run: 11
Total run time: 132.435 s

9. On the edited node, restart the kubelet service:

$ systemctl restart kubelet

56 Chapter 16. Changing the hostname of a MetalK8s node

CHAPTER

SEVENTEEN

VOLUMEMANAGEMENT

This section highlights MetalK8s Volume Management which covers volume creation and volume dele-
tion neccessary for use in persistent data storage within a MetalK8s Cluster.

17.1 StorageClass Creation

MetalK8s uses StorageClass objects to describe how Volumes are formatted and mounted. This section
hightlights how to create a Storageclass using the CLI.

1. Create a StorageClass manifest.

You can define a new StorageClass using the following template:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:

name: <storageclass_name>
provisioner: kubernetes.io/no-provisioner
reclaimPolicy: Retain
volumeBindingMode: WaitForFirstConsumer
mountOptions:
- rw

parameters:
fsType: <filesystem_type>
mkfsOptions: <mkfs_options>

Set the following fields:

• mountOptions: specifies how the volume should be mounted. For example rw (read/write),
ro (read-only).

• fsType: specifies the filesystem to use on the volume. xfs and ext4 are the only currently
supported file system types.

• mkfsOptions: specifies how the volume should be formatted. This field is optional (note that
the options are passed as a JSON-encoded string). For example ‘[“-m”, “0”]’ could be used
as mkfsOptions for an ext4 volume.

• Set volumeBindingMode as WaitForFirstConsumer in order to delay the binding and provi-
sioning of a Pod until a Pod using the PersistentVolumeClaim is created.

2. Create the StorageClass.

root@bootstrap $ kubectl apply -f storageclass.yml

3. Check that the StorageClass has been created.

root@bootstrap $ kubectl get storageclass <storageclass_name>
NAME PROVISIONER AGE
<storageclass_name> kubernetes.io/no-provisioner 2s

57

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

17.2 Volume Management using the CLI

To use persistent storage in a MetalK8s cluster, one needs to create Volume objects. In order to create
Volumes you need to have StorageClass objects registered in your cluster. See StorageClass Creation

17.2.1 Volume Creation

This section describes how to create a Volume from the CLI.

1. Create a Volume manifest

You can define a new Volume using the following template:

apiVersion: storage.metalk8s.scality.com/v1alpha1
kind: Volume
metadata:

name: <volume_name>
spec:

nodeName: <node_name>
storageClassName: <storageclass_name>
mode: "Filesystem"
rawBlockDevice:

devicePath: <device_path>

Set the following fields:

• name: the name of your volume, must be unique

• nodeName: the name of the node where the volume will be located.

• storageClassName: the StorageClass to use

• mode: describes how the volume is intended to be consumed, either Block or Filesystem
(default to Filesystem if not specified).

• devicePath: path to the block device (for example, /dev/sda1).

2. Create the Volume

root@bootstrap $ kubectl apply -f volume.yml

3. Verify that the Volume was created

root@bootstrap $ kubectl get volume <volume_name>
NAME NODE STORAGECLASS
<volume_name> bootstrap metalk8s-demo-storageclass

17.2.2 Volume Deletion

This section highlights how to delete a Volume in a MetalK8s cluster using the CLI

1. Delete a Volume

root@bootstrap $ kubectl delete volume <volume_name>
volume.storage.metalk8s.scality.com <volume_name> deleted

2. Check that the Volume has been deleted

58 Chapter 17. Volume Management

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Note: The command below returns a list of all volumes. The deleted volume entry should not be
found in the list.

root@bootstrap $ kubectl get volume

17.3 Volume Management using the UI

This section describes the creation and deletion of MetalK8s Volume using the MetalK8s UI. In order
to create Volumes you need to have StorageClass objects registered in your cluster. See StorageClass
Creation

17.3.1 Volume Creation

To access the UI, refer to this procedure

1. Navigate to the Nodes list page, by clicking the button in the sidebar:

2. From the Node list, select the node you would like to create a volume on

17.3. Volume Management using the UI 59

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

3. Navigate to the Volumes tab

4. Click the + button to create a volume

5. Fill out the respective fields

60 Chapter 17. Volume Management

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

• Name: Denotes the volume name.

• Labels: A set of key/value pairs that are used by Persistent Volume Claims to select
the right Persistent Volumes.

• Storage Class: Refer to the storage class creation page listed here: StorageClass
Creation

• Type: Metalk8s currently only supports RawBlockDevice and SparseLoopDevice.

• Device path: Refers to the path of an existing storage device.

6. Finally, click the Create button

7. You should have a new volume listed in the Volume list

17.3. Volume Management using the UI 61

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

8. If you click on any volume in the Volume list, you will see more information in the Volume detail
view:

17.3.2 Volume Deletion

1. To delete a volume from the MetalK8s UI, from the volume listing, click the delete button

2. Confirm the volume deletion request by clicking the Delete button

62 Chapter 17. Volume Management

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

17.3. Volume Management using the UI 63

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

64 Chapter 17. Volume Management

CHAPTER

EIGHTEEN

ACCOUNT ADMINISTRATION

This section highlights MetalK8s Account Administration which covers user authentication, identity
management and access control.

18.1 User Authentication and Identity management

Identity management and user authentication in MetalK8s is driven by the integration of kube-apiserver
and Dex (an OIDC provider).

Kubernetes API enables OpenID Connect (OIDC) as one authentication strategy (it also supports
certificate-based authentication) by trusting Dex as an OIDC Provider.

Dex can authenticate users against:

• a static user store (stored in configuration)

• a connector-based interface, allowing to plug in external such as LDAP, SAML, GitHub, Active
Directory and others.

18.1.1 MetalK8s OIDC based Services

MetalK8s out of the box enables OpenID Connect (OIDC) based authentication for its UI and Grafana
service.

18.1.2 Administering Grafana and MetalK8s UI

A fresh installation of MetalK8s has its UI and Grafana service with default login credentials as:
admin@metalk8s.invalid / password.

This default user is defined in Dex configuration as a static user, to allow MetalK8s administrators first
time access to these services. It is recommended that MetalK8s administrators change the default pass-
word.

Note: The MetalK8s UI and Grafana are both configured to use OIDC as an authentication mechanism,
and trust Dex as a Provider. Changing the Dex configuration, including the default credentials, will
impact both UIs.

For information on how to access the MetalK8s UI, please refer to this procedure

For information on how to access the Grafana service, please refer to this procedure

65

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

18.1.3 Add new static user

To add a new static user for either the MetalK8s UI and/or Grafana service, refer to this procedure

18.1.4 Change static user password

To change the default password for the MetalK8s UI and/or Grafana service, refer to this procedure

Todo: Add documentation on the following

• Dex connectors

• How to add a new connector (LDAP, AD, SAML)

66 Chapter 18. Account Administration

CHAPTER

NINETEEN

CLUSTER AND SERVICES CONFIGURATIONS

This section contains information describing the list of available Cluster and Services Configurations
including procedures for customizing and applying any given Cluster and Services Configurations.

19.1 Managing Cluster and Services Configurations

Newly deployed MetalK8s clusters come with chosen default values for most Cluster services. These
default values are transparent to Admin users and can be customized at any point in time given that
Administrators follow the documented procedure to the later.

19.1.1 Managing default runtime Service Configurations

MetalK8s addons (Alertmanager, Dex, Grafana and Prometheus) ships with default runtime service con-
figurations required for basic service deployment. Find below an exhaustive list of available default
Service Configurations deployed in a MetalK8s cluster:

Alertmanager

The following basic Alertmanager configurations are required for starting up Alertmanager within a
MetalK8s cluster. The default configuration values for Alertmanager are specified in the output below
and can be overridden by specifying its corresponding values within a Cluster and Service ConfigMap
(metalk8s-alertmanager-config). An advanced list of Alertmanager configurations will be provided in
future versions with provided guidelines on how to add these configurations to the Service ConfigMap.

This document below describes parameters that are set by default.

Configuration of the Alertmanager service
apiVersion: addons.metalk8s.scality.com
kind: AlertmanagerConfig
spec:

Configure the Alertmanager Deployment
deployment:

replicas: 1
notification:

config:
global:

resolve_timeout: 5m
templates: []
route:

group_by: ['job']
group_wait: 30s
group_interval: 5m
repeat_interval: 12h

(continues on next page)

67

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

(continued from previous page)

receiver: 'null'
routes:
- match:

alertname: Watchdog
receiver: 'null'

receivers:
- name: 'null'

inhibit_rules: []

Dex

Dex (an Identity Provider) that drives user authentication and identity management in a MetalK8s cluster
is provisioned with the following default configurations. The default configuration values for Dex are
specified in the output below and can be overridden by specifying its corresponding values within the
Cluster and Service ConfigMap (metalk8s-dex-config).

This document below describes parameters that are set by default.

Configuration of the Dex (OIDC) service
apiVersion: addons.metalk8s.scality.com
kind: DexConfig
spec:

Configure the Dex Deployment
deployment:

replicas: 2
connectors: []

Grafana

The default configuration values for Grafana are specified in the output below and can be overridden by
specifying its corresponding values within the Cluster and Service ConfigMap (metalk8s-grafana-config).

This document below describes parameters that are set by default.

Configuration of the Grafana service
apiVersion: addons.metalk8s.scality.com
kind: GrafanaConfig
spec:

Configure the Grafana Deployment
deployment:

replicas: 1

Prometheus

The default configuration values for Prometheus are specified in the output below and can be overridden
by specifying its corresponding values within the Cluster and Service ConfigMap (metalk8s-grafana-
config).

This document below describes parameters that are set by default.

Configuration of the Prometheus service
apiVersion: addons.metalk8s.scality.com
kind: PrometheusConfig
spec:

(continues on next page)

68 Chapter 19. Cluster and Services Configurations

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

(continued from previous page)

Configure the Prometheus Deployment
deployment:

replicas: 1
config:

enable_admin_api: false

19.1.2 Managing Authentication

Add a local static user

Local authentication via static users is enabled by default after a fresh MetalK8s installation.

Important: To continue using MetalK8s in cases where the external authentication system
fails, we advise MetalK8s administrators to leave the default super admin account enabled at
all times.

To add a new static user, perform the following operations:

1. Generate a bcrypt hash of your new password.

• To generate the bcrypt hash, on the Bootstrap node, run the following.

root@bootstrap $ htpasswd -nBC 14 "" | tr -d ':'
New password:
Re-type new password:
<your hash here, starting with "$2y$14$">

2. Generate a unique UserID by running the following command.

root@bootstrap $ python -c 'import uuid; print uuid.uuid4()'

3. From the Bootstrap node, edit the ConfigMap metalk8s-dex-config and then add a new entry
using:

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmaps metalk8s-dex-config -n metalk8s-auth

The new entry should be unique and possess mandatory fields like email, hash, username and
userID like in the example below.

[...]
data:

config.yaml: |-
spec:

localuserstore:
userlist:

- email: "<email>"
hash: "<replace-with-hash>"
username: "<username>"
userID: "<uuidv4>"

[...]

4. Save the ConfigMap changes.

5. From the Bootstrap node, run the following to propagate the changes.

19.1. Managing Cluster and Services Configurations 69

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

root@bootstrap $ kubectl exec -n kube-system -c salt-master \
--kubeconfig /etc/kubernetes/admin.conf \
salt-master-bootstrap -- salt-run \
state.sls metalk8s.addons.dex.deployed saltenv=metalk8s-2.5.3-dev

6. Finally, create and apply the required ClusterRoleBinding.yaml file that ensures that the newly
added static user is bound to a Cluster Role.

Note: MetalK8s installations come with already existing Cluster Roles. Administrators can create
new Cluster Roles or refer to the existing Cluster Roles.

To obtain the list of available Cluster Roles in a MetalK8s cluster, use the following command:

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf get clusterroles

For more information about a Cluster Role, run the following command to describe it.

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf get clusterroles \
<name> -o yaml

For starters, MetalK8s administrators can provision new users using the cluster-admin Cluster Role.
Note that this Cluster Role by default grants cluster-wide permissions to all resources within a
cluster. For more information refer to RBAC documentation.

• Use the following template to create the ClusterRoleBinding.yaml file where:

– <name> refers to any freely chosen name

– <email> refers to the new user email as defined in step (3) above

– <cluster-role> refers to the Cluster Role picked from the list above

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

name: <name>
subjects:
- kind: User

name: <email>
apiGroup: rbac.authorization.k8s.io

roleRef:
kind: ClusterRole
name: <cluster-role>
apiGroup: rbac.authorization.k8s.io

• Apply the ClusterRoleBinding configurations using:

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf apply -f \
ClusterRoleBinding.yaml

7. Verify that the user has been successfully added and you can log in to the MetalK8s UI using the
new email and password.

70 Chapter 19. Cluster and Services Configurations

mailto:root@bootstrap
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Change password for local static user

To change the password of an existing user, perform the following operations:

1. Generate a bcrypt hash of the new password using this procedure .

2. From the Bootstrap node, edit the ConfigMap metalk8s-dex-config and then change the hash for
the selected user:

Note: Override default Admin password

Newly deployed MetalK8s cluster comes provisioned with a default admin account. To override
the password for this default admin account, perform the operation below specifying the email
admin@metalk8s.invalid. MetalK8s will automatically override the default password with the new
entry you have specified.

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmaps metalk8s-dex-config -n metalk8s-auth

[..]
config.yaml: |-

localuserstore:
enabled: true
userlist:

- email: "user@metalk8s.invalid"
hash: "<new-password-hash>"
username: "user"
userID: "08a8684b-db88-4b73-90a9-3cd1661f5466"

[...]

3. Save the ConfigMap changes.

4. From the Bootstrap node, run the following to propagate the changes.

root@bootstrap $ kubectl exec -n kube-system -c salt-master \
--kubeconfig /etc/kubernetes/admin.conf \
salt-master-bootstrap -- salt-run \
state.sls metalk8s.addons.dex.deployed saltenv=metalk8s-2.5.3-dev

5. Verify that the password has been changed and you can log in to the MetalK8s UI using the new
password

Todo: Add documentation on the following tracked topics

• Change static user password (issue #2075)

• External authentication (issue #2013)

– Configuring LDAP

– Configuring Active Directory(AD)

19.1. Managing Cluster and Services Configurations 71

mailto:root@bootstrap

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

19.1.3 Managing Cluster Monitoring

MetalK8s ships with Prometheus Operator which takes charge of deploying the monitoring stack
(Prometheus, Alertmanager and Grafana). Service configurations for the 3 main services that make
up the monitoring stack can be found in the Namespace metalk8s-monitoring under the following Con-
figMaps:

Service ConfigMap-Name
Alertmanager metalk8s-alertmanager-config
Grafana metalk8s-grafana-config
Prometheus metalk8s-prometheus-config

Configuring replicas count

MetalK8s administrators can scale the monitoring stack directly by changing the number of replicas
which is by default set to a single pod per service after a fresh MetalK8s installation.

To change the number of replicas for any of the services listed above, perform the following operations:

1. From the Bootstrap node, edit the ConfigMap <ConfigMap-Name> attributed to the service and then
modify the replicas entry.

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmaps <ConfigMap-Name> -n metalk8s-monitoring

For each service in the MetalK8s monitoring stack, consult the Monitoring Services table to obtain
the ConfigMap-Name to be used for the above command.

Make sure to replace <number-of-replicas> field with an integer value (For example 2).

[...]
data:

config.yaml: |-
spec:

deployment:
replicas: <number-of-replicas>

[...]

2. Save the ConfigMap changes.

3. From the Bootstrap node, execute the following command which connects to the Salt master con-
tainer and applies salt-states to propagate the new changes down to the underlying services.

Note: Scaling the number of pods for services like Prometheus and Alertmanager require provi-
sioning extra persistent volumes for these pods to startup normally. Refer to this procedure for more
information.

root@bootstrap $ kubectl exec -n kube-system -c salt-master \
--kubeconfig /etc/kubernetes/admin.conf \
salt-master-bootstrap -- salt-run state.sls \
metalk8s.addons.prometheus-operator.deployed saltenv=metalk8s-2.5.

→˓3-dev

Todo: Add documentation on the following tracked topics

• Add and customize Alertmanager notifications (Epic ##2193)

72 Chapter 19. Cluster and Services Configurations

mailto:root@bootstrap

CHAPTER

TWENTY

CLUSTER MONITORING

This section contains information describing the MetalK8s monitoring and alerting stack, metric re-
sources that are automatically monitored once MetalK8s is deployed, a list of alerting and recording
rules which are pre-configured and much more.

20.1 Monitoring stack

MetalK8s ships with a monitoring stack that provides a cluster-wide view of cluster health, pod status,
node status, network traffic status and much more. These view points are usually represented as charts,
counts and graphs. For a closer look, access the Grafana Service to get more insights on monitoring stats
provided once MetalK8s is deployed.

The MetalK8s monitoring stack consist of the following main components;

• Alertmanager

• Grafana

• Kube-state-metrics

• Prometheus

• Prometheus Node-exporter

Todo:

• For each of the components list above, provide a detail description of its role within the Monitoring
stack.

• How to customize default alerting & recording rules

• Default alerting & recording rules are available as a json file, we should use the json to generate a
corresponding rst table as below

20.1.1 Prometheus

In a MetalK8s cluster, the Prometheus service is responsible for recording real-time metrics in a time
series database. Prometheus is capable of querying a list of datasources called exporters at specific
polling frequency and then aggregating this data across the various sources. Prometheus makes use of a
special language Prometheus Query Language - PromQL for writing alerting and recording rules which
we will later see.

73

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Default Alerting rules

Alerting rules enable a user to specify a condition that must occur before an external system like slack
is notified. For example, MetalK8s administrators could want to raise an alert for any node that is
unreachable for a duration >1 minutes.

Out-of-the-box, MetalK8s ships with preconfigured alerting rules. These alerting rules are typically writ-
ten as PromQL queries. The table below outlines some of the preconfigured alerting rules exposed from
a newly deployed MetalK8s cluster.

Table 1: Default Prometheus Alerting rules
Name Severity Description
AlertmanagerConfigInconsistent critical The configuration of the instances of the Alertmanager cluster {{$labels.service}} are out of sync.
AlertmanagerFailedReload warning Reloading Alertmanager’s configuration has failed for {{ $labels.namespace }}/{{ $labels.pod}}.
AlertmanagerMembersInconsistent critical Alertmanager has not found all other members of the cluster.
etcdInsufficientMembers critical etcd cluster “{{ $labels.job }}”: insufficient members ({{ $value }}).
etcdNoLeader critical etcd cluster “{{ $labels.job }}”: member {{ $labels.instance }} has no leader.
etcdHighNumberOfLeaderChanges warning etcd cluster “{{ $labels.job }}”: instance {{ $labels.instance }} has seen {{ $value }} leader changes within the last hour.
etcdHighNumberOfFailedGRPCRequests warning etcd cluster “{{ $labels.job }}”: {{ $value }}% of requests for {{ $labels.grpc_method }} failed on etcd instance {{ $labels.instance }}.
etcdHighNumberOfFailedGRPCRequests critical etcd cluster “{{ $labels.job }}”: {{ $value }}% of requests for {{ $labels.grpc_method }} failed on etcd instance {{ $labels.instance }}.
etcdGRPCRequestsSlow critical etcd cluster “{{ $labels.job }}”: gRPC requests to {{ $labels.grpc_method }} are taking {{ $value }}s on etcd instance {{ $labels.instance }}.
etcdMemberCommunicationSlow warning etcd cluster “{{ $labels.job }}”: member communication with {{ $labels.To }} is taking {{ $value }}s on etcd instance {{ $labels.instance }}.
etcdHighNumberOfFailedProposals warning etcd cluster “{{ $labels.job }}”: {{ $value }} proposal failures within the last hour on etcd instance {{ $labels.instance }}.
etcdHighFsyncDurations warning etcd cluster “{{ $labels.job }}”: 99th percentile fync durations are {{ $value }}s on etcd instance {{ $labels.instance }}.
etcdHighCommitDurations warning etcd cluster “{{ $labels.job }}”: 99th percentile commit durations {{ $value }}s on etcd instance {{ $labels.instance }}.
etcdHighNumberOfFailedHTTPRequests warning {{ $value }}% of requests for {{ $labels.method }} failed on etcd instance {{ $labels.instance }}
etcdHighNumberOfFailedHTTPRequests critical {{ $value }}% of requests for {{ $labels.method }} failed on etcd instance {{ $labels.instance }}.
etcdHTTPRequestsSlow warning etcd instance {{ $labels.instance }} HTTP requests to {{ $labels.method }} are slow.
TargetDown warning {{ printf “%.4g” $value }}% of the {{ $labels.job }}/{{ $labels.service }} targets in {{ $labels.namespace }} namespace are down.
Watchdog none This is an alert meant to ensure that the entire alerting pipeline is functional. This alert is always firing, therefore it should always be firing in Alertmanager and always fire against a receiver. There are integrations with various notification mechanisms that send a notification when this alert is not firing. For example the “DeadMansSnitch” integration in PagerDuty.
KubeAPIErrorBudgetBurn critical The API server is burning too much error budget
KubeAPIErrorBudgetBurn critical The API server is burning too much error budget
KubeAPIErrorBudgetBurn warning The API server is burning too much error budget
KubeAPIErrorBudgetBurn warning The API server is burning too much error budget
KubeStateMetricsListErrors critical kube-state-metrics is experiencing errors at an elevated rate in list operations. This is likely causing it to not be able to expose metrics about Kubernetes objects correctly or at all.
KubeStateMetricsWatchErrors critical kube-state-metrics is experiencing errors at an elevated rate in watch operations. This is likely causing it to not be able to expose metrics about Kubernetes objects correctly or at all.
KubePodCrashLooping critical Pod {{ $labels.namespace }}/{{ $labels.pod }} ({{ $labels.container }}) is restarting {{ printf “%.2f” $value }} times / 5 minutes.
KubePodNotReady critical Pod {{ $labels.namespace }}/{{ $labels.pod }} has been in a non-ready state for longer than 15 minutes.
KubeDeploymentGenerationMismatch critical Deployment generation for {{ $labels.namespace }}/{{ $labels.deployment }} does not match, this indicates that the Deployment has failed but has not been rolled back.
KubeDeploymentReplicasMismatch critical Deployment {{ $labels.namespace }}/{{ $labels.deployment }} has not matched the expected number of replicas for longer than 15 minutes.
KubeStatefulSetReplicasMismatch critical StatefulSet {{ $labels.namespace }}/{{ $labels.statefulset }} has not matched the expected number of replicas for longer than 15 minutes.
KubeStatefulSetGenerationMismatch critical StatefulSet generation for {{ $labels.namespace }}/{{ $labels.statefulset }} does not match, this indicates that the StatefulSet has failed but has not been rolled back.
KubeStatefulSetUpdateNotRolledOut critical StatefulSet {{ $labels.namespace }}/{{ $labels.statefulset }} update has not been rolled out.
KubeDaemonSetRolloutStuck critical Only {{ $value | humanizePercentage }} of the desired Pods of DaemonSet {{ $labels.namespace }}/{{ $labels.daemonset }} are scheduled and ready.
KubeContainerWaiting warning Pod {{ $labels.namespace }}/{{ $labels.pod }} container {{ $labels.container}} has been in waiting state for longer than 1 hour.
KubeDaemonSetNotScheduled warning {{ $value }} Pods of DaemonSet {{ $labels.namespace }}/{{ $labels.daemonset }} are not scheduled.
KubeDaemonSetMisScheduled warning {{ $value }} Pods of DaemonSet {{ $labels.namespace }}/{{ $labels.daemonset }} are running where they are not supposed to run.
KubeCronJobRunning warning CronJob {{ $labels.namespace }}/{{ $labels.cronjob }} is taking more than 1h to complete.
KubeJobCompletion warning Job {{ $labels.namespace }}/{{ $labels.job_name }} is taking more than one hour to complete.
KubeJobFailed warning Job {{ $labels.namespace }}/{{ $labels.job_name }} failed to complete.
KubeHpaReplicasMismatch warning HPA {{ $labels.namespace }}/{{ $labels.hpa }} has not matched the desired number of replicas for longer than 15 minutes.
KubeHpaMaxedOut warning HPA {{ $labels.namespace }}/{{ $labels.hpa }} has been running at max replicas for longer than 15 minutes.
KubeCPUOvercommit warning Cluster has overcommitted CPU resource requests for Pods and cannot tolerate node failure.
KubeMemoryOvercommit warning Cluster has overcommitted memory resource requests for Pods and cannot tolerate node failure.
KubeCPUQuotaOvercommit warning Cluster has overcommitted CPU resource requests for Namespaces.
KubeMemoryQuotaOvercommit warning Cluster has overcommitted memory resource requests for Namespaces.

continues on next page

74 Chapter 20. Cluster Monitoring

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Table 1 – continued from previous page
Name Severity Description
KubeQuotaExceeded warning Namespace {{ $labels.namespace }} is using {{ $value | humanizePercentage }} of its {{ $labels.resource }} quota.
CPUThrottlingHigh warning {{ $value | humanizePercentage }} throttling of CPU in namespace {{ $labels.namespace }} for container {{ $labels.container }} in pod {{ $labels.pod }}.
KubePersistentVolumeFillingUp critical The PersistentVolume claimed by {{ $labels.persistentvolumeclaim }} in Namespace {{ $labels.namespace }} is only {{ $value | humanizePercentage }} free.
KubePersistentVolumeFillingUp warning Based on recent sampling, the PersistentVolume claimed by {{ $labels.persistentvolumeclaim }} in Namespace {{ $labels.namespace }} is expected to fill up within four days. Currently {{ $value | humanizePercentage }} is available.
KubePersistentVolumeErrors critical The persistent volume {{ $labels.persistentvolume }} has status {{ $labels.phase }}.
KubeAPILatencyHigh warning The API server has an abnormal latency of {{ $value }} seconds for {{ $labels.verb }} {{ $labels.resource }}.
KubeAPIErrorsHigh warning API server is returning errors for {{ $value | humanizePercentage }} of requests for {{ $labels.verb }} {{ $labels.resource }} {{ $labels.subresource }}.
KubeClientCertificateExpiration warning A client certificate used to authenticate to the apiserver is expiring in less than 7.0 days.
KubeClientCertificateExpiration critical A client certificate used to authenticate to the apiserver is expiring in less than 24.0 hours.
AggregatedAPIErrors warning An aggregated API {{ $labels.name }}/{{ $labels.namespace }} has reported errors. The number of errors have increased for it in the past five minutes. High values indicate that the availability of the service changes too often.
AggregatedAPIDown warning An aggregated API {{ $labels.name }}/{{ $labels.namespace }} is down. It has not been available at least for the past five minutes.
KubeAPIDown critical KubeAPI has disappeared from Prometheus target discovery.
KubeControllerManagerDown critical KubeControllerManager has disappeared from Prometheus target discovery.
KubeNodeNotReady warning {{ $labels.node }} has been unready for more than 15 minutes.
KubeNodeUnreachable warning {{ $labels.node }} is unreachable and some workloads may be rescheduled.
KubeletTooManyPods warning Kubelet ‘{{ $labels.node }}’ is running at {{ $value | humanizePercentage }} of its Pod capacity.
KubeNodeReadinessFlapping warning The readiness status of node {{ $labels.node }} has changed {{ $value }} times in the last 15 minutes.
KubeletPlegDurationHigh warning The Kubelet Pod Lifecycle Event Generator has a 99th percentile duration of {{ $value }} seconds on node {{ $labels.node }}.
KubeletPodStartUpLatencyHigh warning Kubelet Pod startup 99th percentile latency is {{ $value }} seconds on node {{ $labels.node }}.
KubeletDown critical Kubelet has disappeared from Prometheus target discovery.
KubeSchedulerDown critical KubeScheduler has disappeared from Prometheus target discovery.
KubeVersionMismatch warning There are {{ $value }} different semantic versions of Kubernetes components running.
KubeClientErrors warning Kubernetes API server client ‘{{ $labels.job }}/{{ $labels.instance }}’ is experiencing {{ $value | humanizePercentage }} errors.’
NodeFilesystemSpaceFillingUp warning Filesystem is predicted to run out of space within the next 24 hours.
NodeFilesystemSpaceFillingUp critical Filesystem is predicted to run out of space within the next 4 hours.
NodeFilesystemAlmostOutOfSpace warning Filesystem has less than 5% space left.
NodeFilesystemAlmostOutOfSpace critical Filesystem has less than 3% space left.
NodeFilesystemFilesFillingUp warning Filesystem is predicted to run out of inodes within the next 24 hours.
NodeFilesystemFilesFillingUp critical Filesystem is predicted to run out of inodes within the next 4 hours.
NodeFilesystemAlmostOutOfFiles warning Filesystem has less than 5% inodes left.
NodeFilesystemAlmostOutOfFiles critical Filesystem has less than 3% inodes left.
NodeNetworkReceiveErrs warning Network interface is reporting many receive errors.
NodeNetworkTransmitErrs warning Network interface is reporting many transmit errors.
NodeHighNumberConntrackEntriesUsed warning Number of conntrack are getting close to the limit
NodeClockSkewDetected warning Clock on {{ $labels.instance }} is out of sync by more than 300s. Ensure NTP is configured correctly on this host.
NodeClockNotSynchronising warning Clock on {{ $labels.instance }} is not synchronising. Ensure NTP is configured on this host.
NodeNetworkInterfaceFlapping warning Network interface “{{ $labels.device }}” changing it’s up status often on node-exporter {{ $labels.namespace }}/{{ $labels.pod }}”
PrometheusOperatorReconcileErrors warning Errors while reconciling {{ $labels.controller }} in {{ $labels.namespace }} Namespace.
PrometheusOperatorNodeLookupErrors warning Errors while reconciling Prometheus in {{ $labels.namespace }} Namespace.
PrometheusBadConfig critical Failed Prometheus configuration reload.
PrometheusNotificationQueueRunningFull warning Prometheus alert notification queue predicted to run full in less than 30m.
PrometheusErrorSendingAlertsToSomeAlertmanagers warning Prometheus has encountered more than 1% errors sending alerts to a specific Alertmanager.
PrometheusErrorSendingAlertsToAnyAlertmanager critical Prometheus encounters more than 3% errors sending alerts to any Alertmanager.
PrometheusNotConnectedToAlertmanagers warning Prometheus is not connected to any Alertmanagers.
PrometheusTSDBReloadsFailing warning Prometheus has issues reloading blocks from disk.
PrometheusTSDBCompactionsFailing warning Prometheus has issues compacting blocks.
PrometheusNotIngestingSamples warning Prometheus is not ingesting samples.
PrometheusDuplicateTimestamps warning Prometheus is dropping samples with duplicate timestamps.
PrometheusOutOfOrderTimestamps warning Prometheus drops samples with out-of-order timestamps.
PrometheusRemoteStorageFailures critical Prometheus fails to send samples to remote storage.
PrometheusRemoteWriteBehind critical Prometheus remote write is behind.
PrometheusRemoteWriteDesiredShards warning Prometheus remote write desired shards calculation wants to run more than configured max shards.
PrometheusRuleFailures critical Prometheus is failing rule evaluations.

continues on next page

20.1. Monitoring stack 75

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Table 1 – continued from previous page
Name Severity Description
PrometheusMissingRuleEvaluations warning Prometheus is missing rule evaluations due to slow rule group evaluation.

76 Chapter 20. Cluster Monitoring

CHAPTER

TWENTYONE

TROUBLESHOOTING GUIDE

This section highlights some of the common problems users face during and after a MetalK8s installation.
If you do not find a solution to a problem you are facing, please reach out to Scality support or create a
Github issue.

21.1 Bootstrap Installation Errors

21.1.1 Bootstrap Installation fails with no straightforward reason

If during a MetalK8s installation you encounter a failure and the console output does not provide suffi-
cient information in order to pin-point the cause of failure, then re-run the installation with the verbose
flag (--verbose).

root@bootstrap $ /srv/scality/metalk8s-2.5.3-dev/bootstrap.sh --verbose

21.1.2 Errors after restarting the Bootstrap node

If you reboot the Bootstrap node and for some reason, some containers (especially the salt-master con-
tainer) refuses to start then perform the following checks:

• Check and ensure that the MetalK8s ISO is mounted properly.

[root@bootstrap vagrant]# mount | grep /srv/scality/metalk8s-2.5.3-dev
/home/centos/metalk8s.iso on /srv/scality/metalk8s-2.5.3-dev type iso9660 (ro,
→˓relatime)

• If the ISO is unmounted, run the following command which will check the the status of the ISO file
and remount it automatically.

[root@bootstrap vagrant]# salt-call state.sls metalk8s.archives.mounted␣
→˓saltenv=metalk8s-2.5.3-dev
Summary for local

Succeeded: 3
Failed: 0

77

https://github.com/scality/metalk8s/issues
mailto:root@bootstrap
mailto:root@bootstrap
mailto:root@bootstrap

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

21.1.3 Bootstrap fails and console log is unscrollable

If during a MetalK8s installation, the Bootstrap process fails and the console output is unscrollable then
you can consult the Bootstrap logs in /var/log/metalk8s-bootstrap.log.

21.2 Account Administration Errors

21.2.1 Forgot the MetalK8s GUI password

If you forget the MetalK8s GUI username and/or password combination, follow this procedure to reset or
change it.

21.3 General Kubernetes Resource Errors

21.3.1 Pod status shows “CrashLoopBackOff”

If after a MetalK8s installation, you notice some Pods are in a state of “CrashLoopBackOff”, then it means
pods are crashing because they start up then immediately exit, thus Kubernetes restarts them and the
cycle continues. To get possible clues about this error, run the following commands and inspect the
output.

[root@bootstrap vagrant]# kubectl -n kube-system describe pods <pod name>
Name: <pod name>
Namespace: kube-system
Priority: 2000000000
Priority Class Name: system-cluster-critical

21.3.2 Persistent Volume Claim(PVC) stuck in “Pending” state

If after provisioning a Volume for a Pod (e.g. Prometheus) and the PVC still hangs in a Pending state,
then try checking the following:

• Check that the volumes have been provisioned and are in a Ready state:

kubectl describe volume <volume-name>
[root@bootstrap vagrant]# kubectl describe volume test-volume
Name: <volume-name>
Status:

Conditions:
Last Transition Time: 2020-01-14T12:57:56Z
Last Update Time: 2020-01-14T12:57:56Z
Status: True
Type: Ready

• Check that a corresponding PersistentVolume exist:

[root@bootstrap vagrant]# kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS STORAGECLASS ␣
→˓ AGE CLAIM
<volume-name> 10Gi RWO Retain Bound <storage-class-
→˓name> 4d22h <persistentvolume-claim-name>

• Check that the PersistentVolume matches the PersistentVolume Claim constraints (size, labels, stor-
age class) by doing the following:

– Find the name of your PersistentVolume Claim:

78 Chapter 21. Troubleshooting Guide

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

[root@bootstrap vagrant]# kubectl get pvc -n <namespace>
NAME STATUS VOLUME CAPACITY ACCESS MODES ␣
→˓ STORAGECLASS AGE
<persistent-volume-claim-name> Bound <volume-name> 10Gi RWO ␣
→˓ <storage-class-name> 24h

– Then check the PersistentVolume Claim constraints if they match:

[root@bootstrap vagrant]# kubectl describe pvc <persistevolume-claim-name> -n <namespace>
Name: <persistentvolume-claim-name>
Namespace: <namespace>
StorageClass: <storage-class-name>
Status: Bound
Volume: <volume-name>
Capacity: 10Gi
Access Modes: RWO
VolumeMode: Filesystem

• If no PersistentVolume exist, then check that the storage operator is up and running.

[root@bootstrap vagrant]# kubectl -n kube-system get deployments storage-operator
NAME READY UP-TO-DATE AVAILABLE AGE
storage-operator 1/1 1 1 4d22h

21.3.3 Access to MetalK8s GUI fails with “undefined backend”

If in the cause of using the MetalK8s GUI, you encounter an “undefined backend” error then perform the
following checks:

• Check that the Ingress pods are running:

[root@bootstrap vagrant]# kubectl -n metalk8s-ingress get daemonsets
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE ␣
→˓NODE SELECTOR AGE
nginx-ingress-control-plane-controller 1 1 1 1 1 ␣
→˓node-role.kubernetes.io/master= 4d22h
nginx-ingress-controller 1 1 1 1 1
→˓<none> 4d22h

• Check the Ingress controller logs:

[root@bootstrap vagrant]# kubectl logs -n metalk8s-ingress nginx-ingress-control-plane-
→˓controller-ftg6v

NGINX Ingress controller
Release: 0.26.1
Build: git-2de5a893a
Repository: https://github.com/kubernetes/ingress-nginx
nginx version: openresty/1.15.8.2

21.3. General Kubernetes Resource Errors 79

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

21.3.4 Pod and Service CIDR conflicts

If after installation of a MetalK8s cluster you notice that Pod-to-Pod communication has routing prob-
lems, perform the following:

• Check the configured values for the internal Pod and Service networks:

[root@bootstrap vagrant]# salt-call pillar.get networks
local:

control_plane:

172.21.254.0/28
pod:

10.233.0.0/16
service:

10.96.0.0/12
workload_plane:

172.21.254.32/27

Make sure the configured IP ranges (CIDR notation) do not conflict with your infrastructure.

Todo:

• Add Salt master/minion logs, and explain how to run a specific state from the Salt master.

• Add troubleshooting for networking issues.

80 Chapter 21. Troubleshooting Guide

Part III

Developer Guide

81

CHAPTER

TWENTYTWO

ARCHITECTURE DOCUMENTS

22.1 Authentication

22.1.1 Context

Currently, when we deploy MetalK8s we pre-provision a super admin user with a username/password
pair. This implies that anyone wanting to use the K8S/Salt APIs needs to authenticate using this single
super admin user.

Another way to access the APIs is by using the K8S admin certificate which is stored in /etc/kubernetes/
admin.conf. We could also manually provision other users, their corresponding credentials as well as
role bindings but this current approach is inflexible to operate in production setups and security is not
guaranteed since username/password pairs are stored in cleartext.

We would atleast like to be able to add different users with different credentials and ideally integrate
K8S authentication system with external an identity provider.

Managing K8S role binding between user/groups High level roles and K8S roles is not part of this speci-
fication.

22.1.2 Requirements

Basically, we are talking about:

• Being able to provision users with an local Identity Provider (IDP)

• Being able to integrate with an external IDP

Integration with LDAP and Microsoft Active Directory(AD) are the most important ones to support.

22.1.3 User Stories

Pre-provisioned user and password change

In order to stay aligned with many other applications, it would make sense to have a pre-provisioned
user with all privileges (kind of super admin) and pre-provisioned password so that it is easy to start
interacting with the system through various admin UIs. Whatever UI this user opens for the first time,
the system should ask him/her to change the password for obvious security reasons.

83

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

User Management with local IdP

As an IT Generalist, I want to provision/edit users and high-level roles. The MetalK8s high-level roles
are:

• Cluster Admin role

• Solution Admin role

• Read Only

This is done from CLI with well-documented procedure. Entered passwords are never visible and en-
crypted when stored in local IDP DB. The CLI tool enables to add/delete and edit passwords and roles.

External IDP Integration

As an IT Generalist, I want to leverage my organisation’s IDP to reuse already provisioned users & groups.
The way we do that integration is through a CLI tool which does not require to have deep knowledge in
K8S or in any local IDP specifics. When External IDP Integration is set up, we can always use local IDP
to authenticate.

Authentication check

UI should make sure the user is well authenticated and if not, redirect to the local IDP login page. In
the local IDP login page, the user should choose between authenticating with local IDP or with external
IDP. If no external IDP is configured, no choice is presented to the user. This local IDP login page should
be styled so that it looks like any other MetalK8s or solutions web pages. All admin UIs should share the
same IDP.

Configuration persistence

Upgrading or redeploying MetalK8s should not affect configuration that was done earlier (i.e. local users
and credentials as well as external IDP integration and configuration)

SSO between Admin UIs

Once IDP is in place and users are provisioned, one authenticated user can easily navigate to the other
admin UIs without having to re-authenticate.

22.1.4 Open questions

• Authentication across multiple sites

• SSO across MetalK8s and solutions Admin UIs and other workload Management UIs

• Our customers may want to collect some statistics out of our Prometheus instances. This API could
be authenticated using OIDC, using an OIDC proxy, or stay unauthenticated. One should consider
the following factors:

– the low sensitivity of the exposed data

– the fact that it is only exposed on the control-plane network

– the fact that most consumers of Prometheus stats are not human (e.g. Grafana, a federating
Prometheus, scripts and others), hence not well-suited for performing the OIDC flow

84 Chapter 22. Architecture Documents

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

22.1.5 Design Choices

Dex is chosen as an Identity Provider(IdP) in MetalK8s based on the above Requirements for the following
reasons:

• Dex’s support for multiple plugins enable integrating the OIDC flow with existing user management
systems such as Active Directory, LDAP, SAML and others.

• Dex can be seamlessly deployed in a Kubernetes cluster.

• Dex provides access to a highly customizable UI which is a step closer to good user experience
which we advocate for.

• Dex can act as a fallback Identity Provider in cases where the external providers become unavailable
or are not configured.

Rejected design choices

Static password file Vs OpenID Connect

Using static password files involves adding new users by updating a static file located on every control-
plane Node. This method requires restarting the Kubernetes API server for every new change introduced.

This was rejected since it is inflexible to operate, requires storing user credentials and there is no support
for a pluggable external identity provider such as LDAP.

X.509 certificates Vs OpenID Connect

Here, each user owns a signed certificate that is validated by the Kubernetes API server.

This approach is not user-friendly that is each certificate has to be manually signed. Providing certificates
for accessing the MetalK8s UI needs much more efforts since these certificates are browser incompatible.
Using certificates is tedious since the certificate revocation process is also cumbersome.

Keycloak Vs Dex

Both systems use OpenID Connect(OIDC) to authenticate a user using a standard OAuth2 flow.

They both offer the ability to have short lived sessions so that user access can be rotated with minimum
efforts.

Finally, they both provide a means for identity management to be handled by an external service such as
LDAP, Active Directory, SAML and others.

Why not Keycloak?

Keycloak while offering similar features as Dex and even much more was rejected for the following
reasons:

• Keycloak is complex to operate(requires its own standalone database) and manage(frequent
database backups are required).

• Currently, no use case exist for implementing a sophisticated Identity Provider like Keycloak when
the minimal Identity Provider from Dex is sufficient.

Note that, Keycloak is considered a future fallback Identity Provider if the need ever arises from a cus-
tomer standpoint.

22.1. Authentication 85

https://github.com/dexidp/dex/

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Unexploited choices

• Guard

A Kubernetes webhook authentication server by AppsCode, allowing you to log into your Kubernetes
cluster by using various identity providers such as LDAP.

• ORY Hydra

It’s an OpenID Connect provider optimized for low resource consumption. ORY Hydra is not an identity
provider but it is able to connect to existing identity providers.

22.1.6 Implementation Details

Iteration 1

• Using Salt, generate self-signed certificates needed for Dex deployment

• Deploy Dex in MetalK8s from the official Dex Charts while making use of the generated certificates
above

• Provision an admin superuser

• Configure Kubernetes API server flags to use Dex

• Expose Dex on the control-plane using Ingress

• Print the admin super user credentials to the CLI after MetalK8s bootstrap is complete

• Implement MetalK8s UI integration with Dex

• Theme the Dex GUI to match MetalK8s UI specs(optional for iteration 1)

Iteration 2

• Provide documentation on how to integrate with these external Identity Providers especially LDAP
and Microsoft Active Directory.

Iteration 3

• Provide Single sign-on(SSO) for Grafana

• Provide SSO between admin UIs

Iteration 4

• Provide a CLI command to change the default superuser password as a prompt after bootstrap

• Provide a CLI for user management and provisioning

The following operations will be supported using the CLI tool:

• Create users password

• List existing passwords

• Delete users password

• Edit existing password

The CLI tool will also be used to create MetalK8s dedicated roles as already specified in the requirements
section of this document. (see high-level roles from the requirements document)

Since it is not advisable to perform the above mentioned operations at the Dex ConfigMap level, using
the Dex gRPC API could be the way to go.

86 Chapter 22. Architecture Documents

https://github.com/appscode/guard/
https://github.com/ory/hydra/

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Iteration 5

• Demand for a superuser’s default password change upon first UI access

• Provide UI integration that performs similar CLI operations for user management and provisioning

This means from the MetalK8s UI, a Cluster administrator should be able to do the following:

• Create passwords for users

• List existing passwords

• Delete users password

• Edit existing password

Note: This iteration is completely optional for reasons being that the Identity Provider from Dex acts
as a fallback for Kubernetes Administrators who do not want to use an external Identity Provider(mostly
because they have a very small user store).

22.1.7 Documentation

In the Operational Guide:

• Document the predefined dex roles(Cluster Admin role, Solution Admin role, Read Only role), their
access levels and how to create them.

• Document how to create users and the secrets associated to them.

• Document how to integrate Dex with external Identity Providers such as LDAP and Microsoft Active
Directory.

In the Installation/Quickstart Guide

• Document how to setup/change the superuser password

22.1.8 Test Plan

We could add some automated end-to-end tests for Dex user creation, and deletion using the CLI and
then setup a mini-lab on scality cloud to try out the UI integration.

22.2 Deployment

Here is a diagram representing how MetalK8s orchestrates deployment on a set of machines:

22.2. Deployment 87

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

88 Chapter 22. Architecture Documents

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

22.2.1 Some notes

• The intent is for this installer to deploy a system which looks exactly like one deployed using
kubeadm, i.e. using the same (or at least highly similar) static manifests, cluster ConfigMaps, RBAC
roles and bindings, . . .

The rationale: at some point in time, once kubeadm gets easier to embed in larger deployment mecha-
nisms, we want to be able to switch over without too much hassle.

Also, kubeadm applies best-practices so why not follow them anyway.

Configuration

To launch the bootstrap process, some input from the end-user is required, which can vary from one
installation to another:

• CIDR (i.e. x.y.z.w/n) of the control plane networks to use

Given these CIDR, we can find the address on which to bind services like etcd, kube-apiserver,
kubelet, salt-master and others.

These should be existing networks in the infrastructure to which all hosts are connected.

This is a list of CIDRs, which will be tried one after another, to find a matching local interface (i.e.
hosts comprising the cluster may reside in different subnets, e.g. control plane in VMs, workload
plane on physical infrastructure).

• CIDRs (i.e. x.y.z.w/n) of the workload plane networks to use

Given these CIDRs, we can find the address to be used by the CNI overlay network (i.e. Calico) for
inter-Pod routing.

This can be the same as the control plane network.

• CIDR (i.e. x.y.z.w/n) of the Pod overlay network

Used to configure the Calico IPPool. This must be a non-existing network in the infrastructure.

Default: 10.233.0.0/16

• CIDR (i.e. x.y.z.w/n) of the Service network

Default: 10.96.0.0/12

Firewall

We assume a host-based firewall is used, based on firewalld. As such, for any service we deploy which
must be accessible from the outside, we must set up an appropriate rule.

We assume SSH access is not blocked by the host-based firewall.

These services include:

• HTTPS on the bootstrap node, for nginx fronting the OCI registry and serving the yum repository

• salt-master on the bootstrap node

• etcd on control-plane / etcd nodes

• kube-apiserver on control-plane nodes

• kubelet on all cluster nodes

22.2. Deployment 89

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

22.3 Monitoring

This document describes the monitoring features included in MetalK8s.

Todo: Describe the monitoring stack (#1075), include quick explanation in quickstart guide.

22.4 Cluster and Services Configurations and Persistence

22.4.1 Context

MetalK8s comes with a set of tools and services that may need to be configured on site. At the same
time, we don’t want the administrator of the cluster to master each and every service of the cluster. We
also don’t want to allow all kind of configurations since it would make the system even more complex to
test and maintain over time.

In addition to those services, MetalK8s deployment may have to be adapted depending on the architec-
ture of the platform or depending on the different use cases and applications running on top of it.

It can be:

• The BootstrapConfig,

• The various roles and taints we set on the node objects of the cluster

• The configurations associated to solutions, such as the list of available solutions, the environments
and namespaces created for a solution

Be it services or MetalK8s configurations, we need to ensure it is persisted and resilient to various type
of events such as node reboot, upgrade, downgrade, backup, restore.

22.4.2 Requirements

User Stories

Available Settings

As a cluster administrator, I have access to a finite list of settings I can customize on-site in order to
match with my environment specificities:

• List of static users and credentials configured in Dex

• Integration with an external IDP configuration in Dex

• Existing Prometheus rules edition and new rules addition

• Alert notifications configuration in Alert Manager

• New Grafana dashboards or new Grafana datasources

• Number of replicas for the Prometheus, Alert Manager, Grafana or Dex deployments

Note: Other items will appear as we add new configurable features in MetalK8s

90 Chapter 22. Architecture Documents

https://github.com/scality/metalk8s/issues/1075

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Settings Documentation

As a cluster administrator, I have access to a documented list of settings I can configure in the Operational
Guide.

Persistence of Configurations

As a cluster administrator, I can upgrade or downgrade my cluster without losing any of the customised
settings described above.

Backup and Restoration

As a cluster administrator, when I am doing a backup of my cluster, I backup all the customised settings
described above and I can restore it when restoring the MetalK8s cluster or I can re apply part or all of it
on a fresh new cluster.

Expert-mode Access

As a MetalK8s expert, I can use kubectl command(s) in order to edit all settings that are exposed. The
intent is to have a method / API that an expert could use, if the right CLI tool or GUI is not available or
not functioning as expected.

22.4.3 Design Choices

ConfigMap is chosen as a unified data access and storage media for cluster and service configurations in
a MetalK8s cluster based on the above requirements for the following reasons:

• Ability to support Update operations on ConfigMaps with CLI and UI easily using our already
existing python kubernetes module.

• Guarantee of adaptability and ease of changing the design and implementation in cases where
customer needs evolve rapidly.

• ConfigMaps are stored in the etcd database which is generally being backed up. This ensures that
user settings cannot be lost easily.

How it works

During Bootstrap, Upgrade or Downgrade stages, when we are assertive that the K8s cluster is fully ready
and available we could perform the following actions:

• Firstly, create and deploy ConfigMaps that will hold customizable cluster and service configura-
tions. These ConfigMaps should define an empty config.yaml in the data section of the ConfigMap
for later use.

A standard layout for each customizable field could be added in the documentation to assist Met-
alK8s administrator in adding and modifying customizations.

To simplify the customizing efforts required from MetalK8s administrators, each customizable Con-
figMap will include an example section with inline documented directives that highlight how users
should add, edit and remove customizations.

• In an Addon config file for example; salt/metalk8s/addons/prometheus-
operator/config/alertmanager.yaml, define the keys and values for default service configurations in
a YAML structured format.

– The layout of service configurations within this file could follow the format:

22.4. Cluster and Services Configurations and Persistence 91

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Configuration of the Alertmanager service
apiVersion: addons.metalk8s.scality.com/v1alpha1
kind: AlertmanagerConfig
spec:

Configure the Alertmanager Deployment
deployment:

replicas: 1

• During Addon manifest rendering, call a Salt module that will merge the configurations defined
within the customizable ConfigMap to those defined in alertmanager.yaml using a Salt merge strat-
egy.

Amongst other merge technique such as aggregate, overwrite, list, the recurse merge technique is
chosen to merge the two data structures because it allows deep merging of python dict objects
while being able to support the aggregation of list structures within the python object.

Aggregating list structures is particularly useful when merging the pre-provisioned Dex static users
found in the default configurations to those newly defined by Administrators especially during
upgrade. Without support for list merge, pre-provisioned Dex static users will be overwritten
during merge time.

Recurse merge strategy example:

Merging the following structures using salt.utils.dictupdate.merge:

– Object (a) (MetalK8s defaults):

apiVersion: addons.metalk8s.scality.com/v1alpha1
kind: AlertmanagerConfig
spec:

deployment:
replicas: 1

– Object (b) (User-defined configurations from ConfigMap):

apiVersion: addons.metalk8s.scality.com/v1alpha1
kind: AlertmanagerConfig
spec:

deployment:
replicas: 2

notification:
config:

global:
resolve_timeout: 5m

– Result of Salt recurse merge:

apiVersion: addons.metalk8s.scality.com/v1alpha1
kind: AlertmanagerConfig
spec:

deployment:
replicas: 2

notification:
config:

global:
resolve_timeout: 5m

The resulting configuration (a python object) will be used to populate the desired configuration
fields within each Addon chart at render time.

The above approach is flexible and fault tolerant because in a MetalK8s cluster, once the user-defined
ConfigMaps are absent or empty during Addon deployment, merging will yield no changes and we can
effectively use default values packaged alongside each MetalK8s Addon to run the deployment.

92 Chapter 22. Architecture Documents

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Using Salt states

Once a ConfigMap is updated by the user (say a user changes the number of replicas for Prometheus
deployments to a new value), then perform the following actions:

• Apply a Salt state that reads the ConfigMap object, validates the schema and checks the new values
passed and re-applies this configuration value to the deployment in question.

• Restart the Kubernetes deployment to pickup newly applied service configurations.

Storage format

A YAML (K8s-like) format was chosen to represent the data field instead of a flat key-value structure for
the following reasons:

• YAML formatted configurations are easy to write and understand hence it will be simpler for users
to edit configurations.

• The YAML format benefits from bearing a schema version, which can be checked and validated
against a version we deploy.

• YAML is a format for describing hierarchical data structures, while using a flat key-value format
would require a form of encoding (and then, decoding) of this hierarchical structure.

A sample ConfigMap can be defined with the following fields.

apiVersion: v1
kind: ConfigMap
metadata:
namespace: <namespace>
name: <config-name>

data:
config.yaml: |-

apiVersion: <object-version>
kind: <kind>
spec:
<key>: <values>

Use case 1:

Configure and store the number of replicas for service specific Deployments found in the metalk8s-
monitoring namespace using the ConfigMap format.

apiVersion: v1
kind: ConfigMap
metadata:
namespace: metalk8s-monitoring
name: metalk8s-grafana-config

data:
config.yaml: |-

apiVersion: metalk8s.scality.com/v1alpha1
kind: GrafanaConfig
spec:
deployment:

replicas: 2

22.4. Cluster and Services Configurations and Persistence 93

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Non-goals

This section contains requirements stated above which the current design choice does not cater for and
will be addressed later:

• Persisting newly added Grafana dashboards or new Grafana datasources especially for modifica-
tions added via the Grafana UI cannot be stored in ConfigMaps and hence will be catered for later.

• As stated in the requirements, adding and editing Prometheus alert rules is also not covered by the
chosen design choice and will need to be addressed differently. Even if we could use ConfigMaps for
Prometheus rules, we prefer relying on the Prometheus Operator and it’s CRD (PrometheusRule).

Rejected design choices

Consul KV vs ConfigMap

This approach offers a full fledge KV store with a /kv endpoint which allows CRUD operations on all
KV data stored in it. Consul KV also allows access to past versions of objects and has an optimistic
concurrency when manipulating multiple objects.

Note that, Consul KV store was rejected because managing operations such as performing full backups,
system restores for a full fledged KV system requires time and much more efforts than the ConfigMap
approach.

Operator (Custom Controller) vs Salt

Operators are useful in that, they provide self-healing functionalities on a reactive basis. When a user
changes a given configuration, it is easy to reconcile and apply these changes to the in-cluster objects.

The Operator approach was rejected because it is much more complex, requires much more effort to
realize and there is no real need for applying changes using this method because configuration changes
are not frequent (for a typical MetalK8s admin, changing the number of replicas for a given deployment
could happen once in 3 months or less) as such, having an operator watch for object changes is not
significant and not very useful at this point in time.

In the Salt approach, Salt Formulas are designed to be idempotent ensuring that service configuration
changes can be applied each time a new configuration is introduced.

22.4.4 Implementation Details

Iteration 1

• Define and deploy new ConfigMap stores that will hold cluster and service configurations as listed
in the requirements. For each ConfigMap, define its schema, its default values, and how it impacts
the configured services

• Template and render Deployment and Pod manifests that will make use of this persisted cluster
and service configurations

• Document how to change cluster and service configurations using kubectl

• Document the entire list of configurations which can be changed by the user

94 Chapter 22. Architecture Documents

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Iteration 2

• Provide a CLI tool for changing any of the cluster and service configurations:

– Count of replicas for chosen Deployments (Prometheus)

– Updating a Dex authentication connector (OpenLDAP, AD and staticUser store)

– Updating the Alertmanager notification configuration

• Provide a UI interface for adding, updating and deleting service specific configurations for example
Dex-LDAP connector integration.

• Provide a UI interface for listing MetalK8s available/supported Dex authentication Connectors

• Provide a UI interface for enabling or disabling Dex authentication connectors (LDAP, Active Direc-
tory, StaticUser store)

• Add a UI interface for listing Alertmanager notification systems MetalK8s will support (Slack,
email)

• Provide a UI interface for adding, modifying and deleting Alertmanager configurations from the
listing above

22.4.5 Documentation

In the Operational Guide:

• Document how to customize or change any given service settings using the CLI tool

• Document how to customize or change any given service settings using the UI interface

• Document the list of service settings which can be configured by the user

• Document the default service configurations files which are deployed along side MetalK8s addons

22.4.6 Test Plan

• Add test that ensures that update operations on user configurations are propagated down to the
various services

• Add test that ensures that after a MetalK8s upgrade, we do not lose previous customizations.

• Other corner cases that require testing to reduce error prone setups include:

– Checking for invalid values in a user defined configuration (e.g setting the number of replicas
to a string (“two”))

– Checking for invalid formats in a user configuration

• Add tests to ensure we could merge a service configuration at render time while keeping user-
defined modifications intact

22.5 Alerting Functionalities

22.5.1 Context

MetalK8s is automatically deploying Prometheus, Alertmanager and a set of predefined alert rules. In
order to leverage Prometheus and Alertmanager functionalities, we need to explain, in the documenta-
tion, how to use it. In a later stage, those functionalities will be exposed through various administration
and alerting UIs, but for now, we want to provide our administrator with enough information in order to
use very basic alerting functionalities.

22.5. Alerting Functionalities 95

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Requirements

As a MetalK8s administrator, I want to list or know the list of alert rules that are deployed on MetalK8s
Prometheus cluster, In order to identify on what specific rule I want to be alerted.

As a MetalK8s administrator, I want to set notification routing and receiver for a specific alert, In order
to get notified when such alert is fired The important routing to support are email, slack and pagerduty.

As a MetalK8s administrator, I want to update thresholds for a specific alert rule, In order to adapt the
alert rule to the specificities and performances of my platform.

As a MetalK8s administrator, I want to add a new alert rule, In order to monitor a specific KPI which is
not monitored out of the box by MetalK8s.

As a MetalK8s administrator, I want to inhibit an alert rule, In order to skip alerts in which I am not
interested.

As a MetalK8s administrator, I want to silence an alert rule for a certain amount of time, In order to skip
alert notifications during a planned maintenance operation.

Warning: In all cases, when MetalK8s administrator is upgrading the cluster, all listed customizations
should remain.

Note: Alertmanager configuration documentation is available here

22.6 Requirements

22.6.1 Deployment

Mimick Kubeadm

A deployment based on this solution must be as close to a kubeadm-managed deployment as possible
(though with some changes, e.g. non-root services). This should, over time, allow to actually integrate
kubeadm and its ‘business-logic’ in the solution.

Fully Offline

It should be possible to install the solution in a fully offline environment, starting from a set of ‘packages’
(format to be defined), which can be brought into the environment using e.g. a DVD image. It must be
possible to validate the provenance and integrity of such image.

Fully Idempotent

After deployment of a specific version of the solution in a specific configuration / environment, it shall
be possible to re-run this deployment, which should cause no changes to the system(s) involved.

96 Chapter 22. Architecture Documents

https://prometheus.io/docs/alerting/configuration/

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Single-Server

It must be possible to deploy the solution on a single server (without any expectations w.r.t. availability,
of course).

Scale-Up from Single-Server Deployment

Given a single-server deployment, it must be possible to scale up to multiple nodes, including control
plane as well as workload plane.

Installation == Upgrade

There shall be no difference between ‘installation’ of the solution vs. upgrading a deployment, from a
logical point of view. Of course, where required, particular steps in the implementation may cause other
actions to be performed, or specific steps to be skipped.

Rolling Upgrade

When upgrading an environment, this shall happen in ‘rolling’ fashion, always cordoning, draining,
upgrading and uncordoning nodes.

Handle CentOS Kernel Memory Accounting

The solution must provide versions of runc and kubelet which are built to include the fixes for the kmem
leak issues found on CentOS/RHEL systems.

See:

• https://github.com/kubernetes/kubernetes/issues/61937

• https://github.com/kubernetes/kubernetes/pull/72114#issuecomment-454953077

• https://github.com/kubernetes/kubernetes/pull/72998#issuecomment-455512443

At-Rest Encryption

Data stored by Kubernetes must be encrypted at-rest (TBD which kind of objects).

Node Labels

Nodes in the cluster can be properly labeled, e.g. including availability zone information.

Vagrant

For evaluation purposes, it should be possible to set up a cluster in a Vagrant environment, in a fully
automated fashion.

22.6. Requirements 97

https://github.com/kubernetes/kubernetes/issues/61937
https://github.com/kubernetes/kubernetes/pull/72114#issuecomment-454953077
https://github.com/kubernetes/kubernetes/pull/72998#issuecomment-455512443

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

22.6.2 Runtime

No Root

All services, including those managed by kubelet, must run as a non-root user, if possible. This user must
be provisioned as a system user/group. E.g., for the etcd service, despite being managed by kubelet using
a static Pod manifest, a suitable etcd user and group should be created on the system, /var/lib/etcd (or
similar) must be owned by this user/group, and the Pod manifest shall specify the etcd process must run
as said UID/GID.

SELinux

The solution may not require SELinux to be disabled or put in permissive mode.

It must, however, be possible to configure workload-plane nodes to be put in SELinux disabled or per-
missive mode, if applications running in the cluster can’t support SELinux.

Read-Only Containers

All containers as deployed by the solution must be fully immutable, i.e. read-only, with EmptyDir volumes
as temporary directories where required.

Environment

The solution must support CentOS 7.6.

CRI

The solution shall not depend on Docker to be available on the systems, and instead rely on either
containerd or cri-o. TBD which one.

OIDC

For ‘human’ authentication, the solution must integrate with external systems like Active Directory. This
may be achieved using OIDC.

For environments in which an external directory service is not available, static users can be configured.

22.6.3 Distribution

No Random Binaries

Any binary installed on a host system must be installed by a system package (e.g. RPM) through the
system package manager (e.g. yum).

98 Chapter 22. Architecture Documents

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Tagged Generated Files

Any file generated during deployment (e.g. configuration files) which are not required to be part of a
system package (i.e. they are installation-specific) should, if possible, contain a line (as a comment, a
preamble, . . .) describing the file was generated by this project, including project version (TBD, given
idempotency) and timestamp (TBD, given idempotency).

Container Images

All container (OCI) images must be built from a well-known base image (e.g. upstream CentOS images),
which shall be based on a digest and parametrized during build (which allows for easy upgrades of all
images when required).

During build, only ‘system’ packages (e.g. RPM) can be installed in the container, using the system
package manager (e.g. CentOS), to ensure the ability to validate provenance and integrity of all files
part of said image.

All containers should be properly labeled (TODO), and define suitable PORT and ENTRYPOINT directives.

22.6.4 Networking

Zero-Trust Networking: Transport

All over-the-wire communication must be encrypted using TLS.

Zero-Trust Networking: Identity

All over-the-wire communication must be validated by checking server identity and, where sensible,
validating client/peer identity.

Zero-Trust Networking: Certificate Scope

Certificates for different ‘realms’ must come from different CA chains, and can’t be shared across multiple
hosts.

Zero-Trust Networking: Certificate TTL

All issued certificates must have a reasonably short time-to-live and, where required, be automatically
rotated.

Zero-Trust Networking: Offline Root CAs

All root CAs must be kept offline, or be password-protected. For automatic certificate creation, inter-
mediate CAs (online, short/medium-lived, without password protection) can be used. These need to be
rotated on a regular basis.

22.6. Requirements 99

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Zero-Trust Networking: Host Firewall

The solution shall deploy a host firewall (e.g., using firewalld) and configure it accordingly (i.e., open
service ports where applicable).

Furthermore, if possible, access to services including etcd and kubelet should be limited, e.g. to etcd peers
or control-plane nodes in the case of kubelet.

Zero-Trust Networking: No Insecure Ports

Several Kubernetes services can be configured to expose an unauthenticated endpoint (sometimes for
read-only purposes only). These should always be disabled.

Zero-Trust Networking: Overlay VPN (Optional)

Encryption and mutual identity validation across nodes for the CNI overlay, bringing over-the-wire en-
cryption for workloads running inside Kubernetes without requiring a service mesh or per-application
TLS or similar, if required.

DNS

Network addressing must, primarily, be based on DNS instead of IP addresses. As such, certificate SANs
should not contain IP addresses.

Server Address Changes

When a server receives a different IP address after a reboot (but can still be discovered through an
updated DNS entry), it must be possible to reconfigure the deployment accordingly, with as little impact
as possible (i.e., requiring as little changes as possible). This related to the DNS section above.

For some services, e.g. keepalived configuration, IP addresses are mandatory, so these are permitted.

Multi-Homed Servers

A deployment can specify subnet CIDRs for various purposes, e.g. control-plane, workload-plane, etcd,
. . . A service part of a specific ‘plane’ must be bound to an address in said ‘plane’ only.

Availability of kube-apiserver

kube-apiserver must be highly-available, potentially using failover, and (optionally) made load-balanced.
I.e., in a deployment we either run a service like keepalived (with VRRP and a VIP for HA, and IPVS for
LB), or there’s a site-local HA/LB solution available which can be configured out-of-band.

E.g. for kube-apiserver, its /healthz endpoint can be used to validate liveness and readiness.

100 Chapter 22. Architecture Documents

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Provide LoadBalancer Services

The solution brings an optional controller for LoadBalancer services, e.g. MetalLB. This can be used to
e.g. front the built-in Ingress controller.

In environments where an external load-balancer is available, this can be omitted and the external load-
balancer can be integrated in the Kubernetes infrastructure (if supported), or configured out-of-band.

Network Configuration: MTU

Care shall be taken to set networking configuration, e.g. MTU sizes, properly across the cluster and the
services relying on it (e.g. the CNI).

Network Configuration: IPIP

Unless required, ‘plain’ networking must be used instead of tunnels, i.e., when using Calico, IPIP should
only be used in cross-subnet networking.

Network Configuration: BGP

In environments where routing configuration using BGP can be achieved, this should be feasible for
MetalLB-managed services, as well as Calico routing, in turn removing the need for IPIP usage.

IPv6

TODO

22.6.5 Storage

TODO

22.6.6 Batteries-Included

Similar to MetalK8s 1.x, the solution comes ‘batteries included’. Some aspects of this, including optional
HA/LB for kube-apiserver and LoadBalancer Services using MetalLB have been discussed before.

Metrics and Alerting: Prometheus

The solution comes with prometheus-operator, including ServiceMonitor objects for provisioned services,
using exporters where required.

Node Monitoring: node_exporter

The solution comes with node_exporter running on the hosts (or a DaemonSet, if the volume usage
restriction can be fixed).

22.6. Requirements 101

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Node Monitoring: Platform

The solution integrates with specific platforms, e.g. it deploys an HPE iLO exporter to capture these
metrics.

Node Monitoring: Dashboards

Dashboards for collected metrics must be deployed, ideally using some grafana-operator for extensibility
sake.

Logging

The solution comes with log aggregation services, e.g. fluent-bit and fluentd. Either a storage system
for said logs is deployed as part of the cluster (e.g. ElasticSearch with Kibana, Curator, Cerebro), or
the aggregation system is configured to ingest into an environment-specific aggregation solution, e.g.
Splunk.

Container Registry

To support fully-offline environments, this is required.

System Package Repository

See above.

Tracing Infrastructure (Optional)

The solution can deploy an OpenTracing-compatible aggregation and inspection service.

Backups

The solution ensures backups of core data (e.g. etcd) are made, at regular intervals as well as before a
cluster upgrade. These can be stored on the cluster node(s), or on a remote storage system (e.g. NFS
volume).

22.7 Solutions

22.7.1 Context

As for now, if we want to deploy applications on a MetalK8s cluster, it’s achievable by applying manifest
through kubectl apply -f manifest.yaml or using Helm with charts.

These approaches work, but for an offline environment, the user must first inject all the needed images
in containerd on every nodes. Plus, this requires some Kubernetes knowledge to be able to install an
application.

Moreover, there is no control on what’s deployed, so it is difficult to enforce certain practices or provide
tooling to ease deployment or lifecycle management of these applications.

We also want MetalK8s to be responsible for deploying applications to keep Kubernetes as an imple-
mentation detail for the end user and as so the user does not need any specific knowledge around it to
manage its applications.

102 Chapter 22. Architecture Documents

https://helm.sh/
https://containerd.io/

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

22.7.2 Requirements

• Ability to orchestrate the deployment and lifecycle of complex applications.

• Support offline deployment, upgrade and downgrade of applications with arbitrary container im-
ages.

• Applications must keep running after a node reboot or a rescheduling of the containers.

• Check archives integrity, validity and authenticity.

• Handle multiple instance of an application with same or different versions.

• Enforce practices (Operator pattern).

• Guidelines for applications developers.

22.7.3 User Stories

Application import

As a cluster administrator, I want to be able to import an application archive using a CLI tool, to make
the application available for deployment.

Application deployment and lifecycle

As an application administrator, I want to manage the deployment and lifecycle (up-
grade/downgrade/scaling/configuration/deletion) of an application using either a UI or through simple
CLI commands (both should be available).

Multiple instances of an application

As an application administrator, I want to be able to deploy both a test and a prod environments for
an application, without collision between them, so that I can qualify/test the application on the test
environment.

Application development

As a developer, I want to have guidelines to follow to develop an application.

Application packaging

As a developer, I want to have documentation to know how to package an application.

Application validation

As a developer, I want to be able to know that a packaged application follows the requirements and is
valid using a CLI tool.

22.7. Solutions 103

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

22.7.4 Design Choices

Solutions

What’s a Solution

It’s a packaged Kubernetes application, archived as an ISO disk image, containing:

• A set of OCI images to inject in MetalK8s image registry

• An Operator to deploy on the cluster

• A UI to manage and monitor the application (optional)

Solution Configuration

MetalK8s already uses a BootstrapConfiguration object, stored in /etc/metalk8s/bootstrap.yaml, to
define how the cluster should be configured from the bootstrap node, and what versions of MetalK8s are
available to the cluster.

In the same way, we will use a SolutionsConfiguration object, stored in /etc/metalk8s/solutions.
yaml, to declare which Solutions are available to the cluster, from the bootstrap node.

Here is how it will look:

apiVersion: solutions.metalk8s.scality.com/v1alpha1
kind: SolutionsConfiguration
archives:

- /path/to/solution/archive.iso
active:

solution-name: X.Y.Z-suffix (or 'latest')

In this configuration file, no explicit information about the contents of archives should appear. When
read by Salt at import time, the archive metadata will be discovered from the archive itself using a
manifest.yaml file at the root of the archive, with the following format:

apiVersion: solutions.metalk8s.scality.com/v1alpha1
kind: Solution
metadata:

annotations:
solutions.metalk8s.scality.com/display-name: Solution Name

labels: {}
name: solution-name

spec:
images:

- some-extra-image:2.0.0
- solution-name-operator:1.0.0
- solution-name-ui:1.0.0

operator:
image:
name: solution-name-operator
tag: 1.0.0

ui:
image:
name: solution-name-ui
tag: 1.0.0

version: 1.0.0

This manifest will be read by a Salt external pillar module, which will permit the consumption of them
by Salt modules and states.

The external pillar will be structured as follows:

104 Chapter 22. Architecture Documents

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

metalk8s:
solutions:

available:
solution-name:

- active: True
archive: /path/to/solution/archive.iso
manifest:

The content of Solution manifest.yaml
apiVersion: solutions.metalk8s.scality.com/v1alpha1
kind: Solution
metadata:

annotations:
solutions.metalk8s.scality.com/display-name: Solution Name

labels: {}
name: solution-name

spec:
images:

- some-extra-image:2.0.0
- solution-name-operator:1.0.0
- solution-name-ui:1.0.0

operator:
image:

name: solution-name-operator
tag: 1.0.0

ui:
image:

name: solution-name-ui
tag: 1.0.0

version: 1.0.0
id: solution-name-1.0.0
mountpoint: /srv/scality/solution-name-1.0.0
name: Solution Name
version: 1.0.0

config:
Content of /etc/metalk8s/solutions.yaml (SolutionsConfiguration)
apiVersion: solutions.metalk8s.scality.com/v1alpha1
kind: SolutionsConfiguration
archives:

- /path/to/solutions/archive.iso
active:

solution-name: X.Y.Z-suffix (or 'latest')
environments:

Fetched from namespaces with label
solutions.metalk8s.scality.com/environment
env-name:

Fetched from namespace annotations
solutions.metalk8s.scality.com/environment-description
description: Environment description
namespaces:

solution-a-namespace:
Data of metalk8s-environment ConfigMap from this namespace
config:

solution-name: 1.0.0
solution-b-namespace:

config: {}

22.7. Solutions 105

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Archive format

The archive will be packaged as an ISO image.

We chose the ISO image format instead of a compressed archive, like a tarball, because we wanted
something easier to inspect without having to uncompress it.

It could also be useful to be able to burn it on a CD, when being in an offline environment and/or with
strong security measures (read-only device that can be easily verified).

Solution archive will be structured as follows:

.
images

some_image_name
1.0.1

<layer_digest>
manifest.json
version

manifest.yaml
operator

| deploy
crds

some_crd_name.yaml
role.yaml

registry-config.inc

OCI Images registry

Every container images from Solution archive will be exposed as a single repository through Met-
alK8s registry. The name of this repository will be computed from the Solution manifest <metadata.
name>-<spec.version>.

Operator Configuration

Each Solution Operator needs to implement a --config flag which will be used to provide a yaml config-
uration file. This configuration will contain the list of available images for a Solution and where to fetch
them. This configuration will be formatted as follows:

apiVersion: solutions.metalk8s.scality.com/v1alpha1
kind: OperatorConfig
repositories:

<solution-version-x>:
- endpoint: metalk8s-registry/<solution-name>-<solution-version-x>
images:

- <image-x>:<tag-x>
- <image-y>:<tag-y>

<solution-version-y>:
- endpoint: metalk8s-registry/<solution-name>-<solution-version-y>
images:

- <image-x>:<tag-x>
- <image-y>:<tag-y>

106 Chapter 22. Architecture Documents

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Solution environment

Solutions will be deployed into an Environment, which is basically a namespace or a group of names-
paces with a specific label solutions.metalk8s.scality.com/environment, containing the Environment
name, and an annotation solutions.metalk8s.scality.com/environment-description, providing a hu-
man readable description of it:

apiVersion: v1
kind: Namespace
metadata:

annotations:
solutions.metalk8s.scality.com/environment-description: <env-description>

labels:
solutions.metalk8s.scality.com/environment: <env-name>

name: <namespace-name>

It allows to run multiple instances of a Solution, optionally with different versions, on the same cluster,
without collision between them.

Each namespace in an environment will have a ConfigMap metalk8s-environment deployed which will
describe what an environment is composed of (Solutions and versions). This ConfigMap will then be
consumed by Salt to deploy Solutions Operators and UIs.

This ConfigMap will be structured as follows:

apiVersion: solutions.metalk8s.scality.com/v1alpha1
kind: ConfigMap
metadata:

name: metalk8s-environment
namespace: <namespace-name>

data:
<solution-x-name>: <solution-x-version>
<solution-y-name>: <solution-y-version>

Environments will be created by a CLI tool or through the Solution UI (both should be available), prior
to deploy Solutions.

Solution management

We will provide CLI and UI to import, deploy and handle the whole lifecycle of a Solution. These tools
are wrapper around Salt formulas.

22.7. Solutions 107

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Interaction diagram

We include a detailed interaction sequence diagram for describing how MetalK8s will handle user input
when deploying / upgrading Solutions.

108 Chapter 22. Architecture Documents

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

22.7. Solutions 109

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

22.7.5 Rejected design choices

CNAB

The Cloud Native Application Bundle (CNAB) is a standard packaging format for multi-component dis-
tributed applications. It basically offers what MetalK8s Solution does, but with the need of an extra
container with almost full access to the Kubernetes cluster and that’s the reason why we did choose to
not use it.

We also want to enforce some practices (Operator, UI, . . .) in Solutions and this is not easily doable
using it.

Moreover, CNAB is a pretty young project and has not yet been adopted by a lot of people, so it’s hard to
predict its future.

22.7.6 Implementation Details

Iteration 1

• Solution example, this is a fake application, with no other goal than allowing testing of MetalK8s
Solutions tooling.

• Salt formulas to manage Solution (deployment and lifecycle).

• Tooling around Salt formulas to ease Solutions management (simple shell script).

• MetalK8s UI to manage Solution.

• Solution automated tests (deployment, upgrade/downgrade, deletion, . . .) in post-merge.

Iteration 2

• MetalK8s CLI to manage Solutions (supersedes shell script & wraps Salt call).

• Integration into monitoring tools (Grafana dashboards, Alerting, . . .).

• Integration with the identity provider (Dex).

• Tooling to validate integrity & validity of Solution ISO (checksum, layout, valid manifests, . . .).

• Multiple CRD versions support (see #2372).

22.7.7 Documentation

In the Operational Guide:

• Document how to import a Solution.

• Document how to deploy a Solution.

• Document how to upgrade/downgrade a Solution.

• Document how to delete a Solution.

In the Developer Guide:

• Document how to monitor a Solution (ServiceMonitor, Service, . . .).

• Document how to interface with the identity provider (Dex).

• Document how to build a Solution (layout, how to package, . . .).

110 Chapter 22. Architecture Documents

https://cnab.io
https://cnab.io

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

22.7.8 Test Plan

First of all, we must develop a Solution example, with at least 2 different versions, to be able to test the
whole feature.

Then, we need to develop automated tests to ensure feature is working as expected. The tests will have
to cover the following points:

• Solution installation and lifecycle (through both UI & CLI):

– Importing / removing a Solution archive

– Activating / deactivating a Solution

– Creating / deleting an Environment

– Adding / removing a Solution in / from an Environment

– Upgrading / downgrading a Solution

• Solution can be plugged to MetalK8s cluster services (monitoring, alerting, . . .).

22.8 Continuous Testing

This document will not describe how to write a test but just the list of tests that should be done and
when.

The goal is to:

• have day-to-day development and PRs merged faster

• have a great test coverage

Lets define 2 differents stages of continuous testing:

• Pre-merge: Run during development process on changes not yet merged

• Post-merge: Run on changes already approved and merged in development branches

22.8.1 Pre-merge

What should be tested in pre-merge on every branch used during development (user/*, feature/*,
improvement/*, bugfix/*, w/*). The pre-merge test should not long too much time (less than 40 minutes
is great) so we can’t test everything in pre-merge, we should only test building of the product and check
that product still usable.

• Building tests

– Build

– Lint

– Unit tests

• Installation tests

– Simple install RHEL

– Simple install CentOs + expansion

When merging several pull requests at the same time, given that we are on a queue branch (q/*), we may
require additional tests as a combination of several PRs could have a larger impact than all individual
PR:

• Simple upgrade/downgrade

22.8. Continuous Testing 111

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

22.8.2 Post-merge

On each and every development/2.* branches we want to run complex tests, that take more time or
need more ressources than classic tests that run during pre-merge, to ensure that the current product
continues to work well.

Nightly

• Upgrade, downgrade tests:

– For previous development branch

e.g.: on development/2.x test upgrade from development/2.(x-1) and downgrade to
development/2.(x-1)

* Build branch development/2.(x-1) (or retrieve it if available)

* Tests:

· Single node test

· Complex deployment test

– For last released version of current minor

e.g.: on development/2.x when developing “2.x.y-dev” test upgrade from metalk8s-2.x.
(y-1) and downgrade to metalk8s-2.x.(y-1)

* Single node test

* Complex deployment test

– For last released version of previous minor

e.g.: on development/2.x when developing “2.x.y-dev” test upgrade from metalk8s-2.(x-1).
z and downgrade to metalk8s-2.(x-1).z where “2.(x-1).z” is the last patch released version
for “2.(x-1)” (z may be different from y)

* Single node test

* Complex deployment test

• Backup, restore tests:

– Environment with at least 3-node etcd cluster, destroy the bootstrap node and spawning a
new fresh node for restoration

– Environment with at least 3-node etcd cluster, destroy the bootstrap node and use one existing
node for restoration

• Solutions tests

Note: Complex deployment is (to be validated):

• 1 bootstrap

• 1 etcd and control

• 1 etcd and control and workload

• 1 workload and infra

• 1 workload

• 1 infra

Todo:

112 Chapter 22. Architecture Documents

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

• Describe solutions tests (#1993)

Weekly

More complex tests:

• Performance/conformance tests

• Validation of contrib tooling (Heat, terraform, . . .)

• Installation of “real” Solution (Zenko, . . .)

• Long lifecycle metalk8s tests (several upgrade, downgrade, backup/restore, expansions, . . .)

Todo: Validate the list of Weekly test to do and define exactly what need to be tested

22.8.3 Adaptive test plan

CI pre-merge may be more flexible by including some logic about the content of the changeset.

The goal here is to test only what needed according to the content of the commit.

For example:

• For a commit that changes uniquely documentation, we don’t need to run the entire installation
test suite but rather run tests related to documentation.

• For a commit touching upgrade orchestrate we want to test upgrade directly in pre-merge and not
wait Post merge build to get the test result.

Todo: Several questions:

• How to get the change of one commit ?

– Depending on the files changed

* How do you know when you change something in salt if this changeset touch upgrade for
example ?

· . . .

– A tag in the commit message

* maybe ?

• How to get the bunch of commit to test ?

– Get commit between HEAD and target branch

* How to get this target ?

· . . .

22.8. Continuous Testing 113

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

22.9 Volume Management

22.9.1 Abstract

To be able to run stateful services (such as Prometheus, Zenko or Hyperdrive), MetalK8s needs the ability
to provide and manage persistent storage resources.

To do so we introduce the concept of MetalK8s Volume, using a Custom Resource Definition (CRD),
built on top of the existing concept of Persistent Volume from Kubernetes. Those Custom Resources
(CR) will be managed by a dedicated Kubernetes operator which will be responsible for the storage
preparation (using Salt states) and lifetime management of the backing Persistent Volume.

Volume management will be available from the Platform UI (through a dedicated tab under the Node
page). There, users will be able to create, monitor and delete MetalK8s volumes.

22.9.2 Scope

Goals

• support two kinds of Volume:

– sparseLoopDevice (backed by a sparse file)

– rawBlockDevice (using whole disk)

• add support for volume creation (one by one) in the Platform UI

• add support for volume deletion (one by one) in the Platform UI

• add support for volume listing/monitoring (show status, size, . . .) in the Platform UI

• expose raw block device (unformated) as Volume

• document how to create a volume

• document how to create a StorageClass object

• automated tests on volume workflow (creation, deletion, . . .)

Non-Goals

• RAID support

• LVM support

• use an Admission Controller for semantic validation

• auto-discovery of the disks

• batch provisioning from the Platform UI

22.9.3 Proposal

To implement this feature we need to:

• define and deploy a new CRD describing a MetalK8s Volume

• develop and deploy a new Kubernetes operator to manage the MetalK8s volumes

• develop new Salt states to prepare and cleanup underlying storage on the nodes

• update the Platform UI to allow volume management

114 Chapter 22. Architecture Documents

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

User Stories

Volume Creation

As a user I need to be able to create MetalK8s volume from the Platform UI.

At creation time I can specify the type of volume I want, and then either its size (for sparseLoopDevice)
or the backing device (for rawBlockDevice).

I should be able monitor the progress of the volume creation from the Platform UI and see when the
volume is ready to use (or if an error occured).

Volume Monitoring

As a user I should be able to see all the volumes existing on a specified node as well as their states.

Volume Deletion

As a user I need to be able to delete a MetalK8s volume from the Platform UI when I no longer need it.

The Platform UI should prevent me from deleting Volumes in use.

I should be able monitor the progress of the volume deletion from the Platform UI.

Component Interactions

User will create Metalk8s volumes through the Platform UI.

The Platform UI will create and delete Volume CRs from the API server.

The operator will watch events related to Volume CRs and PersistentVolume CRs owned by a Volume
and react in order to update the state of the cluster to meet the desired state (prepare storage when a
new Volume CR is created, clean up resources when a Volume CR is deleted). It will also be responsible
for updating the states of the volumes.

To do its job, the operator will rely on Salt states that will be called asynchronously (to avoid blocking
the reconciliation loop and keep a reactive system) through the Salt API. Authentication to the Salt API
will be done though a dedicated Salt account (with limited privileges) using credentials from a dedicated
cluster Service Account.

22.9. Volume Management 115

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

116 Chapter 22. Architecture Documents

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

22.9.4 Implementation Details

Volume Status

A PersistentVolume from Kubernetes has the following states:

• Pending: used for PersistentVolume that is not available

• Available: a free resource that is not yet bound to a claim

• Bound: the volume is bound to a claim

• Released: the claim has been deleted, but the resource is not yet reclaimed by the cluster

• Failed: the volume has failed its automatic reclamation

Similarly, our Volume object will have the following states:

• Available: the backing storage is ready and the associated PersistentVolume was created

• Pending: preparation of the backing storage in progress (e.g. an asynchronous Salt call is still
running).

• Failed: something is wrong with the volume (Salt state execution failed, invalid value in the CRD,
. . .)

• Terminating: cleanup of the backing storage in progress (e.g. an asynchronous Salt call is still
running).

Persistent block device naming

In order to have a reliable automount through kubelet, we need to create the underlying PersistentVol-
ume using a persistent name for the backing storage device. We use different strategies according to the
Volume type:

• sparseLoopDevice and rawBlockDevice with a filesystem: during the formatting, we set the
filesystem UUID to the Volume UUID and use dev/disk/by-uuid/<volume-uuid> as device path.

• sparseLoopDevice without filesystem: we create a GUID Partition Table on the sparse file and
create a single partition encompassing the whole device, setting the GUID of the partition to the
Volume UUID. We can then use /dev/disk/by-partuuid/<volume-uuid> as device path.

• rawBlockDevice without filesystem:

– the rawBlockDevice is a disk (e.g. /dev/sdb): we use the same strategy as above.

– the rawBlockDevice is a partition (e.g. /dev/sdb1): we change the partition GUID using the
Volume UUID and use /dev/disk/by-partuuid/<volume-uuid> as device path.

– The rawBlockDevice is a LVM volume: we use the existing LVM UUID and use /dev/disk/
by-id/dm-uuid-LVM-<lvm-uuid> as device path.

Operator Reconciliation Loop

Reconciliation Loop (Top Level)

When the operator receives a request, the first thing it does is to fetch the targeted Volume. If it doesn’t
exist, which happens when a volume is Terminating and has no finalizer, then there nothing more to do.

If the volume does exist, the operator has to check its semantic validity.

Once pre-checks are done, there are four cases:

1. the volume is marked for deletion: the operator will try to delete the volume (more details in
Volume Finalization).

22.9. Volume Management 117

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

2. the volume is stuck in an unrecoverable (automatically at least) error state: the operator can’t do
anything here, the request is considered done and won’t be rescheduled.

3. the volume doesn’t have a backing PersistentVolume (e.g. newly created volume): the operator
will deploy the volume (more details in Volume Deployment).

4. the backing PersistentVolume exists: the operator will check its status to update the volume’s
status accordingly.

Volume Deployment

To deploy a volume, the operator needs to prepare its storage (using Salt) and create a backing Persis-
tentVolume.

If the Volume object has no value in its Job field, it means that the deployment hasn’t started, thus the
operator will set a finalizer on the Volume object and then start the preparation of the storage using an
asynchronous Salt call (which gives a job ID) before rescheduling the request to monitor the evolution
of the job.

If we do have a job ID, then something is in progress and we monitor it until it’s over. If it has ended
with an error, we move the volume into a failed state.

Otherwise we make another asynchronous Salt call to get information (size, persistent path, . . .) on the
backing storage device (the polling is done exactly as described above).

If we successfully retrieved the storage device information, we proceed with the PersistentVolume cre-
ation, taking care of putting a finalizer on the PersistentVolume (so that its lifetime is tied to ours) and
setting ourself as the owner of the PersistentVolume.

Once the PersistentVolume is successfuly created, the operator will move the Volume to the Available
state and reschedule the request (the next iteration will check the health of the PersistentVolume just
created).

118 Chapter 22. Architecture Documents

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Steady state

Once the volume is deployed, we update, with a synchronous Salt call, the deviceName status field at
each reconciliation loop iteration. This field contains the name of the underlying block device (as found
under /dev).

Volume Finalization

A Volume in state Pending cannot be deleted (because the operator doesn’t know where it is in the
creation process). In such cases, the operator will we reschedule the request until the volume becomes
either Failed or Available.

For volumes with no backing PersistentVolume, the operator will directly reclaim the storage on the
node (using an asynchronous Salt job) and upon completion it will remove the Volume finalizer to let
Kubernetes delete the object.

If there is a backing PersistentVolume, the operator will delete it (if it’s not already in a terminating
state) and watch for the moment when it becomes unused (this is done by rescheduling). Once the back-
ing PersistentVolume becomes unused, the operator will reclaim its storage and remove the finalizers
to let the object be deleted.

Volume Deletion Criteria

A volume should be deletable from the UI when it’s deletable from a user point of view (you can always
delete an object from the API), i.e. when deleting the object will trigger an “immediate” deletion (i.e.
the object won’t be retained).

Here are the few rules that are followed to decide if a Volume can be deleted or not:

• Pending states are left untouched: we wait for the completion of the pending action before decid-
ing which action to take.

• The lack of status information is a transient state (can happen between the Volume creation and
the first iteration of the reconciliation loop) and thus we make no decision while the status is unset.

• Volume objects whose PersistentVolume is bound cannot be deleted.

• Volume objects in Terminating state cannot be deleted because their deletion is already in
progress!

In the end, a Volume can be deleted in two cases:

22.9. Volume Management 119

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

• it has no backing PersistentVolume

• the backing PersistentVolume is not bound (Available, Released or Failed)

22.9.5 Documentation

In the Operational Guide:

• document how to create a volume from the CLI

• document how to delete a volume from the CLI

• document how to create a volume from the UI

• document how to delete a volume from the UI

• document how to create a StorageClass from the CLI (and mention that we should set Volume-
BindingMode to WaitForFirstConsumer)

In the Developper Documentation:

• document how to run the operator locally

• document this design

22.9.6 Test Plan

We should have automated end-to-end tests of the feature (creation and deletion), from the CLI and
maybe on the UI part as well.

120 Chapter 22. Architecture Documents

CHAPTER

TWENTYTHREE

HOW TO BUILD METALK8S

23.1 Requirements

In order to build MetalK8s we rely and third-party tools, some of them are mandatory, others are optional.

23.1.1 Mandatory

• Python 3.6 or higher: our buildchain is Python-based

• docker 17.03 or higher: to build some images locally

• skopeo, 0.1.19 or higher: to save local and remote images

• hardlink: to de-duplicate images layers

• mkisofs: to create the MetalK8s ISO

23.1.2 Optional

• git: to add the Git reference in the build metadata

• Vagrant, 1.8 or higher: to spawn a local cluster (VirtualBox is currently the only provider sup-
ported)

• VirtualBox: to spawn a local cluster

• tox: to run the linters

23.1.3 Development

If you want to develop on the buildchain, you can add the development dependencies with pip install
-r requirements/build-dev-requirements.txt.

23.2 How to build an ISO

Our build system is based on doit.

To build, simply type ./doit.sh.

Note that:

• you can speed up the build by spawning more workers, e.g. ./doit.sh -n 4.

• you can have a JSON output with ./doit.sh --reporter json

When a task is prefixed by:

121

https://www.python.org/
https://www.docker.com/
https://github.com/containers/skopeo
https://jak-linux.org/projects/hardlink/
https://git-scm.com/
https://www.vagrantup.com/
https://www.virtualbox.org
https://pypi.org/project/tox
http://pydoit.org/

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

• --: the task is skipped because already up-to-date

• .: the task is executed

• !!: the task is ignored.

23.2.1 Main tasks

To get a list of the available targets, you can run ./doit.sh list.

The most important ones are:

• iso: build the MetalK8s ISO

• lint: run the linting tools on the codebase

• populate_iso: populate the ISO file tree

• vagrant_up: spawn a development environment using Vagrant

By default, i.e. if you only type ./doit.sh with no arguments, the iso task is executed.

You can also run a subset of the build only:

• packaging: download and build the software packages and repositories

• images: download and build the container images

• salt_tree: deploy the Salt tree inside the ISO

23.3 Configuration

You can override some buildchain’s settings through a .env file at the root of the repository.

Available options are:

• PROJECT_NAME: name of the project

• BUILD_ROOT: path to the build root (either absolute or relative to the repository)

• VAGRANT_PROVIDER: type of machine to spawn with Vagrant

• VAGRANT_UP_ARGS: command line arguments to pass to vagrant up

• VAGRANT_SNAPSHOT_NAME: name of auto generated Vagrant snapshot

• DOCKER_BIN: Docker binary (name or path to the binary)

• GIT_BIN: Git binary (name or path to the binary)

• HARDLINK_BIN: hardlink binary (name or path to the binary)

• MKISOFS_BIN: mkisofs binary (name or path to the binary)

• SKOPEO_BIN: skopeo binary (name or path to the binary)

• VAGRANT_BIN: Vagrant binary (name or path to the binary)

• GOFMT_BIN: gofmt binary (name or path to the binary)

• OPERATOR_SDK_BIN: the Operator SDK binary (name or path to the binary)

Default settings are equivalent to the following .env:

export PROJECT_NAME=MetalK8s
export BUILD_ROOT=_build
export VAGRANT_PROVIDER=virtualbox
export VAGRANT_UP_ARGS="--provision --no-destroy-on-error --parallel --provider $VAGRANT_PROVIDER"
export DOCKER_BIN=docker

(continues on next page)

122 Chapter 23. How to build MetalK8s

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

(continued from previous page)

export HARDLINK_BIN=hardlink
export GIT_BIN=git
export MKISOFS_BIN=mkisofs
export SKOPEO_BIN=skopeo
export VAGRANT_BIN=vagrant
export GOFMT_BIN=gofmt
export OPERATOR_SDK_BIN=operator-sdk

23.4 Buildchain features

Here are some useful doit commands/features, for more information, the official documentation is here.

23.4.1 doit tabcompletion

This generates completion for bash or zsh (to use it with your shell, see the instructions here).

23.4.2 doit list

By default, ./doit.sh list only shows the “public” tasks.

If you want to see the subtasks as well, you can use the option --all.

% ./doit.sh list --all
images Pull/Build the container images.
iso Build the MetalK8s image.
lint Run the linting tools.
lint:shell Run shell scripts linting.
lint:yaml Run YAML linting.
[. . .]

Useful if you only want to run a part of a task (e.g. running the lint tool only on the YAML files).

You can also display the internal (a.k.a. “private” or “hidden”) tasks with the -p (or --private) options.

And if you want to see all the tasks, you can combine both: ./doit.sh list --all --private.

23.4.3 doit clean

You can cleanup the build tree with the ./doit.sh clean command.

Note that you can have fine-grained cleaning, i.e. cleaning only the result of a single task, instead of
trashing the whole build tree: e.g. if you want to delete the container images, you can run ./doit.sh
clean images.

You can also execute a dry-run to see what would be deleted by a clean command: ./doit.sh clean -n
images.

23.4. Buildchain features 123

http://pydoit.org/contents.html
http://pydoit.org/cmd_other.html#tabcompletion

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

23.4.4 doit info

Useful to understand how tasks interact with each others (and for troubleshooting), the info command
display the task’s metadata.

Example:

% ./doit.sh info _build_rpm_packages:calico-cni-plugin/srpm

_build_rpm_packages:calico-cni-plugin/srpm

Build calico-cni-plugin-3.8.2-1.el7.src.rpm

status : up-to-date

file_dep :
- /home/foo/dev/metalk8s/_build/packages/redhat/calico-cni-plugin/SOURCES/calico-ipam-amd64
- /home/foo/dev/metalk8s/_build/packages/redhat/calico-cni-plugin/SOURCES/v3.8.2.tar.gz
- /home/foo/dev/metalk8s/packages/redhat/calico-cni-plugin.spec
- /home/foo/dev/metalk8s/_build/packages/redhat/calico-cni-plugin/SOURCES/calico-amd64

task_dep :
- _package_mkdir_rpm_root
- _build_builder:metalk8s-rpm-builder
- _build_rpm_packages:calico-cni-plugin/mkdir

targets :
- /home/foo/dev/metalk8s/_build/packages/redhat/calico-cni-plugin-3.8.2-1.el7.src.rpm

23.4.5 Wildcard selection

You can use wildcard in task names, which allows you to either:

• execute all the sub-tasks of a specific task: _build_rpm_packages:calico-cni-plugin/* will exe-
cute all the tasks required to build the package.

• execute a specific sub-task for all the tasks: _build_rpm_packages:*/get_source will retrieve the
source files for all the packages.

124 Chapter 23. How to build MetalK8s

CHAPTER

TWENTYFOUR

HOW TO RUN COMPONENTS LOCALLY

24.1 Running a cluster locally

24.1.1 Requirements

• the mandatory requirements for the buildchain

• Vagrant, 1.8 or higher: to spawn a local cluster (VirtualBox is currently the only provider sup-
ported)

• VirtualBox: to spawn a local cluster

24.1.2 Procedure

You can spawn a local MetalK8s cluster by running ./doit.sh vagrant_up.

This command will start a virtual machine (using VirtualBox) and:

• mount the build tree

• import a private SSH key (automatically generated in .vagrant)

• generate a boostrap configuration

• execute the bootstrap script to make this machine a bootstrap node

• provision sparse-file Volumes for Prometheus and Alertmanager to run on this bootstrap node

After executing this command, you have a MetalK8s bootstrap node up and running and you can connect
to it by using vagrant ssh bootstrap.

Note that you can extend your cluster by spawning extra nodes (up to 9 are already pre-defined in the
provided Vagrantfile) by running vagrant up node1 --provision. This will:

• spawn a virtual machine for the node 1

• import the pre-shared SSH key into it

You can then follow the cluster expansion procedure to add the freshly spawned node into your MetalK8s
cluster (you can get the node’s IP with vagrant ssh node1 -- sudo ip a show eth1).

125

https://www.vagrantup.com/
https://www.virtualbox.org

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

24.2 Running the storage operator locally

24.2.1 Requirements

• Go (1.13 or higher) and operator-sdk (0.17 or higher): to build the Kubernetes Operators

• Mercurial: some Go dependencies are downloaded from Mercurial repositories.

24.2.2 Prerequisites

• You should have a running Metalk8s cluster somewhere

• You should have installed the dependencies locally with cd storage-operator; go mod download

24.2.3 Procedure

1. Copy the /etc/kubernetes/admin.conf from the bootstrap node of your cluster onto your local
machine

2. Delete the already running storage operator, if any, with kubectl --kubeconfig /etc/kubernetes/
admin.conf -n kube-system delete deployment storage-operator

3. Get the address of the Salt API server with kubectl --kubeconfig /etc/kubernetes/admin.conf
-n kube-system describe svc salt-master | grep :4507

4. Run the storage operator with:

cd storage-operator
export KUBECONFIG=<path-to-the-admin.cong-you-copied-locally>
export METALK8S_SALT_MASTER_ADDRESS=https://<ADDRESS-OF-SALT-API>
operator-sdk up local

24.3 Running the platform UI locally

24.3.1 Requirements

• Node.js, 10.16

24.3.2 Prerequisites

• You should have a running Metalk8s cluster somewhere

• You should have installed the dependencies locally with cd ui; npm install

24.3.3 Procedure

1. Connect to the boostrap node of your cluster, and execute the following command as root:

python - <<EOF
import subprocess
import json

output = subprocess.check_output([
'salt-call', 'pillar.get', 'metalk8s', '--out', 'json'

])

(continues on next page)

126 Chapter 24. How to run components locally

https://golang.org/
https://github.com/operator-framework/operator-sdk
https://www.mercurial-scm.org/
https://nodejs.org/en/

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

(continued from previous page)

pillar = json.loads(output)['local']
output = subprocess.check_output([

'salt-call', 'grains.get', 'metalk8s:control_plane_ip', '--out', 'json'
])
control_plane_ip = json.loads(output)['local']
ui_conf = {

'url': 'https://{}:6443'.format(control_plane_ip),
'url_salt': 'https://{salt[ip]}:{salt[ports][api]}'.format(

salt=pillar['endpoints']['salt-master']
),
'url_prometheus': 'http://{prom[ip]}:{prom[ports][web][node_port]}'.format(

prom=pillar['endpoints']['prometheus']
),

}
print(json.dumps(ui_conf, indent=4))
EOF

2. Copy the output into ui/public/config.json.

3. Run the UI with cd ui; npm run start

24.3. Running the platform UI locally 127

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

128 Chapter 24. How to run components locally

CHAPTER

TWENTYFIVE

DEVELOPMENT

25.1 Continuous Testing

25.1.1 Add a new test in the continuous integration system

When we refer to test, at continuous integration system level, it means an end-to-end task (building,
linting, testing, . . .) that requires a dedicated environment, with one or several machines (virtual or
container).

A test that only checks a specific feature of a classic MetalK8s deployment should be part of PyTest BDD
and not integrated as a dedicated stage in continuous integration system (e.g.: Testing that Ingress Pod
are running and ready is a feature of MetalK8s that should be tested in PyTest BDD and not directly as a
stage in continuous integration system).

How to choose between Pre-merge and Post-merge

The choice really depends on the goals of this test.

As a high-level view:

Pre-merge:

• Test is usually not long and could last less than 30 minutes.

• Test essential features of the product (installation, expansion, building, . . .).

Post-merge:

• Test last longer (more than 30 minutes).

• Test “non-essential” (not mandatory to have a working cluster) feature of the product (upgrade,
downgrade, solutions, . . .).

How to add a stage in continuous integration system

Continuous integration system is controlled by the eve/main.yml YAML file.

A stage is defined by a worker and a list of steps. Each stage should be in the stages section and triggered
by pre-merge or post-merge.

To know the different kind of workers available, all the builtin steps, how to trigger a stage, . . . please
refer to the eve documentation.

129

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

A test stage in MetalK8s context

In MetalK8s context each test stage (eve stage that represents a full test) should generate a status file
containing the result of the test, either a success or a failure, and a JUnit file containing the result of the
test and information about this test.

To generate the JUnit file, each stage needs the following information:

• The name of the Test Suite this test stage is part of

• Section path to group tests in a Test Suite if needed (optional)

• A test name

Before executing all the steps of the test we first generate a failed result and at the end of the test we
generate a success result. So that the failed result get overridden by the success one if everything goes
well.

At the very end, the final status of a test should be uploaded no matter the outcome of the test.

To generate these results, we already have several helpers available.

Example:

Consider we want a new test named My Test which is part of the subsection My sub section of the
section My section in the test suite My Test Suite.

Note: Test, suite and class names are not case sensitive in eve/main.yml.

my-stage:
_metalk8s_internal_info:

junit_info: &_my_stage_junit_info
TEST_SUITE: my test suite
CLASS_NAME: my section.my sub section
TEST_NAME: my test

worker:
...
Worker informations
...

steps:
- Git: *git_pull
- ShellCommand: # Generate a failed final status

<<: *add_final_status_artifact_failed
env:

<<: *_env_final_status_artifact_failed
<<: *_my_stage_junit_info
STEP_NAME: my-stage

...
All test steps should be here !
...
- ShellCommand: # Generate a success final status

<<: *add_final_status_artifact_success
env:

<<: *_env_final_status_artifact_success
<<: *_my_stage_junit_info
STEP_NAME: my-stage

- Upload: *upload_final_status_artifact

130 Chapter 25. Development

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

TestRail upload

To store results, we use TestRail which is a declarative engine. It means that all test suites, plans, cases,
runs, etc. must be declared, before proceeding to the results upload.

Warning: TestRail upload is only done for Post-merge as we do not want to store each and every
test result coming from branches with on-going work.

Do not follow this section if it’s not a Post-merge test stage.

The file eve/testrail_description_file.yaml contains all the TestRail object declarations, that will be
created automatically during Post-merge stage execution.

It’s a YAML file used by TestRail UI to describe the objects.

Example:

My Test Suite:
description: >-

My first test suite description
section:

My Section:
description: >-

My first section description
sub_sections:

My sub section:
description: >-

My first sub secttion description
cases:

My test: {}
sub_sections: <-- subsections can be nested as deep as needed

25.2 Commit Best Practices

25.2.1 How to split a change into commits

Why do we need to split changes into commits

This has several advantages amongst which are:

• small commits are easier to review (a large pull request correctly divided into commits is eas-
ier/faster to review than a medium-sized one with less thought-out division)

• simple commits are easier to revert (e866b01f0553/8208a170ac66)/cherry-pick (Pull request
#1641)

• when looking for a regression (e.g. using git bisect) it is easier to find the root cause

• make git log and git blame way more useful

25.2. Commit Best Practices 131

https://github.com/scality/metalk8s/commit/e866b01f05535925e80da20aca00417904422433
https://github.com/scality/metalk8s/commit/8208a170ac66912ace018bcd00c058ad214d169b
https://github.com/scality/metalk8s/pull/1641
https://github.com/scality/metalk8s/pull/1641

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Examples

The golden rule to create good commits is to ensure that there is only one “logical” change per commit.

Cosmetic changes

Use a dedicated commit when you want to make cosmetic changes to the code (linting, whitespaces,
alignment, renaming, etc.).

Mixing cosmetics and functional changes is bad because the cosmetics (which tend to generate a lot
of diff/noise) will obscure the important functional changes, making it harder to correctly determine
whether the change is correct during the review.

Example (Pull request #1620):

• one commit for the cosmetic changes: 766f572e462c6933c8168a629ed4f479bb68a803

• one commit for the functional changes: 3367fabdefc0b35d34bf7cf2fb0d33ff81f9fd5a

Ideally, purely cosmetic changes which inflate the number of changes in a PR significantly, should go in
a separate PR

Refactoring

When introducing new features, you often have to add new helpers or refactor existing code. In such
case, instead of having single commit with everything inside, you can either:

1. first add a new helper: 29f49cbe9dfa

2. then use it in new code: 7e47310a8f20

Or:

1. first add the new code: 5b2a6d5fa498

2. then refactor the now duplicated code: ac08d0f53a83

Mixing unrelated changes

It is sometimes tempting to do small unrelated changes as you are working on something else in the
same code area. Please refrain to do so, or at least do it in a dedicated commit.

Mixing non-related changes into the same commit makes revert and cherry-pick harder (and understand-
ing as well).

The pull request #1846 is a good example. It tackles three issues at once: #1830 and #1831 (be-
cause they are similar) and #839 (because it was making the other changes easier), but it uses distincts
commits for each issue.

25.2.2 How to write a commit message

Why do we need commit messages

After comments in the code, commit messages are the easiest way to find context for every single line
of code: running git blame on a file will give you, for each line, the identifier of the last commit that
changed the line.

Unlike a comment in the code (which applies to a single line or file), a commit message applies to a
logical change and thus can provide information on the design of the code and why the change was
done. This makes commit messages a part of the code documentation and makes them helpful for other
developers to understand your code.

132 Chapter 25. Development

https://github.com/scality/metalk8s/issues/1620
https://github.com/scality/metalk8s/commit/766f572e462c6933c8168a629ed4f479bb68a803
https://github.com/scality/metalk8s/commit/3367fabdefc0b35d34bf7cf2fb0d33ff81f9fd5a
https://github.com/scality/metalk8s/commit/29f49cbe9dfa0b824c818d25d4a2f6965351e65d
https://github.com/scality/metalk8s/commit/7e47310a8f20fd49f0ad36707b20e6c2a53df638
https://github.com/scality/metalk8s/commit/5b2a6d5fa49815180a2effdd37cb58542e83b5a5
https://github.com/scality/metalk8s/commit/ac08d0f53a835a0b2bc61c1fe5b7317bf4d6550c
https://github.com/scality/metalk8s/pull/1846
https://github.com/scality/metalk8s/issues/1830
https://github.com/scality/metalk8s/issues/1831
https://github.com/scality/metalk8s/issues/839

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Last but not least: commit messages can also be used for automating tasks such as issue management.

Note that it is important to have all the necessary information in the commit message, instead of having
them (only) in the related issue, because:

• the issue can contain troubleshooting/design discussion/investigation with a lot of back and forth,
which makes hard to get the gist of it.

• you need access to an external service to get the whole context, which goes against one of biggest
advantage of the distributed SCM (having all the information you need offline, from your local
copy of the repository).

• migration from one tracking system to another will invalidate the references/links to the issues.

Anatomy of a good commit message

A commit is composed of a subject, a body and a footer. A blank line separates the subject from body
and the body from the footer.

The body can be omitted for trivial commit. That being said, be very careful: a change might seem trivial
when you write it but will seem totally awkward the day you will have to understand why you made it.
If you think your patch is trivial and somebody tells you he does not understand your patch, then your
patch is not trivial and it requires a detailed description.

The footer contains references for issue management (Refs, Closes, etc.) or other relevant annotations
(cherry-pick source, etc.). Optional if your commit is not related to any issue (should be pretty rare).

Subject

A good commit message should start with a short summary of the change: the subject line.

This summary should be written using the imperative mood and carry as much information as possible
while staying short, ideally under 50 characters (this is a goal, the hard limit is 72).

Subject topic and description shouldn’t start with a capital.

It is composed of:

• a topic, usually the name of the affected component (ui, build, docs, etc.)

• a slash and then the name of the sub-component (optional)

• a colon

• the description of the change

Examples:

• ci: use proxy-cache to reduce flakiness

• build/package: factorize task_dep in DEBPackage

• ui/volume: add banner when failed to create volume

If several components are affected:

• split your commit (preferred)

• pick only the most affected one

• entirely omit the component (happen for truly global change, like renaming licence to license
over the whole codebase)

As for “what is the topic?”, the following heuristic works quite well for MetalK8s: take the name of
the top-level directory (ui, salt, docs, etc.) except for eve (use ci instead). buildchain could also be
shortened to build.

25.2. Commit Best Practices 133

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Having the topic in the summary line allows for faster peering over git log output (you can know what
the commit is about just by reading a few characters, not need to check the entire commit message or the
associated diff). It also helps the review process: if you have a big pull request affecting front-end and
back-end, front-end people can only review commits starting with ui (not need to read over the whole
diff, or to open each commit one by one in Github to see which ones are interesting).

Body

The body should answer the following questions:

• Why did you make this change? (is this for a new feature, a bugfix - then, why was it buggy? -,
some cleanup, some optimization, etc.). It is really important to describe the intent/motivation
behind the changes.

• What change did you make? Document what the original problem was and how it is being fixed
(can be omitted for short obvious patches).

• Why did you make the change in that way and not in another (mention alternate solutions consid-
ered but discarded, if any)?

When writing your message you must consider that your reader does not know anything about the code
you have patched.

You should also describe any limitations of the current code. This will avoid reviewer pointing them out,
and also inform future people looking at the code which tradeoffs were made at the time.

Lines must be wrapped at 72 characters.

Footer

Use references such as Refs, See, Fixes or Closes followed by an issue number to automate issue man-
agement.

In addition to the references, you can also provide the URLs (it will be quicker to access them from the
terminal).

Example:

topic: description

[commit message body]

Refs: #XXXXX
Refs: #YYYYY
Closes: #ZZZZZ
See: https://github.com/scality/metalk8s/issues/XXXXX
See: https://github.com/scality/metalk8s/issues/YYYYY
See: https://github.com/scality/metalk8s/issues/ZZZZZ

Footer can also contain a signature (git commit -s) or cherry-pick source (git cherry-pick -x).

134 Chapter 25. Development

https://help.github.com/en/github/managing-your-work-on-github/closing-issues-using-keywords

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Examples

Bad commit message

• Quick fix for service port issue: what was the issue? It is a quick fix, why not a proper fix?
What are the limitations?

• fix glitchs: as expressive and useful as ~fix stuff~

• Bump Create React App to v3 and add optional-chaining: Why? What are the benefits?

• Add skopeo & m2crypto to packages list: Why do we need them?

• Split certificates bootstrap between CA and clients: Why do we need this split? What is the
issue we are trying to solve here?

Note that none of these commits contain a reference to an issue (which could have been used as an
(invalid) excuse for the lack of information): you really have no more context/explanation than what is
shown here.

Good commit message

Commit b531290c04c4

Add gzip to nginx conf

This will decrease the size of the file the client need to download
In the current version we have ~7x improvement.
From 3.17Mb to 0.470Mb send to the client

Some things to note about this commit message:

• Reason behind the changes are explained: we want to decrease the size of the downloaded re-
sources.

• Results/effects are demonstrated: measurements are given.

Commit 82d92836d4ff

Use safer invocation of shell commands

Running commands with the "host" fixture provided by testinfra was done
without concern for quoting of arguments, and might be vulnerable to
injections / escaping issues.

Using a log-like formatting, i.e. `host.run('my-cmd %s %d', arg1, arg2)`
fixes the issue (note we cannot use a list of strings as with
`subprocess`).

Issue: GH-781

Some things to note about this commit message:

• Reasons behind the changes are explained: potential security issue.

• Solution is described: we use log-like formatting.

• Non-obvious parts are clarified: cannot use a list of string (as expected) because it is not supported.

25.2. Commit Best Practices 135

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Commit f66ac0be1c19

build: fix concurrent build on MacOS

When trying to use the parallel execution feature of `doit` on Mac, we
observe that the worker processes are killed by the OS and only the
main one survives.

The issues seems related to the fact that:
- by default `doit` uses `fork` (through `multiprocessing`) to spawn its
workers

- since macOS 10.13 (High Sierra), Apple added a new security measure[1]
that kill processes that are using a dangerous mix of threads and
forks[2])

As a consequence, now instead of working most of the time (and failing
in a hard way to debug), the processes are directly killed.

There are three ways to solve this problems:
1. set the environment variable `OBJC_DISABLE_INITIALIZE_FORK_SAFETY=YES.`
2. don't use `fork`
3. fix the code that uses a dangerous mix of thread and forks

(1) is not good as it doesn't fix the underlying issue: it only disable
the security and we're back to "works most of the time, sometimes does
weird things"
(2) is easy to do because we can tell to `doit` to uses only threads
instead of forks.
(3) is probably the best, but requires more troubleshooting/time/

In conclusion, this commit implements (2) until (3) is done (if ever) by
detecting macOS and forcing the use of threads in that case.

[1]: http://sealiesoftware.com/blog/archive/2017/6/5/Objective-C_and_fork_in_macOS_1013.html
[2]: https://blog.phusion.nl/2017/10/13/why-ruby-app-servers-break-on-macos-high-sierra-and-what-
→˓can-be-done-about-it/

Closes: #1354

Some things to note about this commit message:

• Observed problem is described: parallel builds crash on macOS.

• Root cause is analyzed: OS security measure + thread/fork mix.

• Several solution are proposed: disable the security, workaround the problem or fix the root cause.

• Selection of a solution is explained: we go for the workaround because it is easy and faster.

• Extra-references are given: links in the footer gives more in-depth explanations/context.

25.2.3 Conclusion

When reviewing a change, do not simply look at the correctness of the code: review the commit message
itself and request improvements to its content. Look out for commits that can be divided, ensure that
cosmetic changes are not mixed with functional changes, etc.

The goal here is to improve the long term maintainability, by a wide variety of developers who may only
have the Git history to get some context so it is important to have a useful Git history.

136 Chapter 25. Development

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

25.3 Python best practices

25.3.1 Import

Avoid from module_foo import symbol_bar

In general, it is a good practice to avoid the form from foo import bar because it introduces two distinct
bindings (bar is distinct from foo.bar) and when the binding in one namespace changes, the binding in
the other will not. . .

That’s also why this can interfere with the mocking.

All in all, this should be avoided when unecessary.

Rationale

Reduce the likelihood of surprising behaviors and ease the mocking.

Example

Good
import foo

baz = foo.Bar()

Bad
from foo import Bar

baz = Bar()

References

• Idioms and Anti-Idioms in Python

• unittest.mock documentation

25.3.2 Naming

Predicate functions

Functions that return a Boolean value should have a name that starts with has_, is_, was_, can_ or
something similar that makes it clear that it returns a Boolean.

This recommandation also applies to Boolean variable.

25.3. Python best practices 137

https://docs.python.org/3.1/howto/doanddont.html#from-module-import-name1-name2%0A
https://docs.python.org/3.6/library/unittest.mock.html#where-to-patch

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Rationale

Makes code clearer and more expressive.

Example

class Foo:
Bad.
def empty(self):

return len(self.bar) == 0

Bad.
def baz(self, initialized):

if initialized:
return

[. . .]

Good.
def is_empty(self):

return len(self.bar) == 0

Good.
def qux(self, is_initialized):

if is_initialized:
return

[. . .]

25.3.3 Patterns and idioms

Don’t write code vulnerable to “Time of check to time of use”

When there is a time window between the checking of a condition and the use of the result of that
check where the result may become outdated, you should always follow the EAFP (It is Easier to Ask for
Forgiveness than Permission) philosophy rather than the LBYL (Look Before You Leap) one (because it
gives you a false sense of security).

Otherwise, your code will be vulnerable to the infamous TOCTTOU (Time Of Check To Time Of Use)
bugs.

In Python terms:

• LBYL: if guard around the action

• EAFP: try/except statements around the action

Rationale

Avoid race conditions, which are a source of bugs and security issues.

138 Chapter 25. Development

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Examples

Bad: the file 'bar' can be deleted/created between the `os.access` and
`open` call, leading to unwanted behavior.
if os.access('bar', os.R_OK):

with open(bar) as fp:
return fp.read()

return 'some default data'

Good: no possible race here.
try:

with open('bar') as fp:
return fp.read()

except OSError:
return 'some default data'

References

• Time of check to time of use

Minimize the amount of code in a try block

The size of a try block should be as small as possible.

Indeed, if the try block spans over several statements that can raise an exception catched by the except,
it can be difficult to know which statement is at the origin of the error.

Of course, this rule doesn’t apply to the catch-all try/except that is used to wrap existing exceptions or
to log an error at the top level of a script.

Having several statements is also OK if each of them raises a different exception or if the exception carries
enough information to make the distinction between the possible origins.

Rationale

Easier debugging, since the origin of the error will be easier to pinpoint.

Don’t use hasattr in Python 2

To check the existence of an attribute, don’t use hasattr: it shadows errors in properties, which can be
surprising and hide the root cause of bugs/errors.

Rationale

Avoid surprising behavior and hard-to-track bugs.

25.3. Python best practices 139

https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Examples

Bad.
if hasattr(x, "y"):

print(x.y)
else:

print("no y!")

Good.
try:

print(x.y)
except AttributeError:

print("no y!")

References

• hasattr() – A Dangerous Misnomer

140 Chapter 25. Development

https://hynek.me/articles/hasattr/

CHAPTER

TWENTYSIX

INTEGRATINGWITHMETALK8S

26.1 Introduction

With a focus on having minimal human actions required, both in its deployment and operation, MetalK8s
also intends to ease deployment and operation of complex applications, named Solutions, on its cluster.

This document defines what a Solution refers to, the responsibilities of each party in this integration, and
will link to relevant documentation pages for detailed information.

26.1.1 What is a Solution?

We use the term Solution to describe a packaged Kubernetes application, archived as an ISO disk image,
containing:

• A set of OCI images to inject in MetalK8s image registry

• An Operator to deploy on the cluster

• Optionally, a UI for managing and monitoring the application

For more details, see the following documentation pages:

• Solution archive guidelines

• Solution Operator guidelines

• (TODO) Solution UI guidelines

Once a Solution is imported in MetalK8s, a user can deploy one or more versions of the Solution Operator,
using either the MetalK8s Solution CLI (./solutions.sh) or the MetalK8s UI Environment page, into
separate Environments (namespaces). Using the Operator-defined CustomResource(s), the user can then
effectively deploy the application packaged in the Solution.

26.1.2 How is a Solution declared in MetalK8s?

MetalK8s uses a BootstrapConfiguration object, stored in /etc/metalk8s/bootstrap.yaml, to define
how the cluster should be configured from the bootstrap node, and what versions of MetalK8s are avail-
able to the cluster.

In the same vein, we use a SolutionsConfiguration object, stored in /etc/metalk8s/solutions.yaml,
to declare which Solutions are available to the cluster, from the bootstrap node.

Here is how it looks like:

apiVersion: metalk8s.scality.com/v1alpha1
kind: SolutionsConfiguration
archives:

- /solutions/storage_1.0.0.iso
- /solutions/storage_latest.iso

(continues on next page)

141

https://coreos.com/blog/introducing-operators.html

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

(continued from previous page)

- /other_solutions/computing.iso
active:

storage: 1.0.0

There is no explicit information about what an archive contains. Instead, we want the archive itself to
contain such information (more details in Solution archive guidelines), and to discover it at import time.

Note that Solutions are imported based on this file contents, i.e. the images they contain are made
available in the registry and the Operator and the UI are deployed, however deploying subsequent
application(s) is left to the user, through manual operations or the Solution UI.

Note: Removing an archive path from the Solutions list effectively removes its related resources (CRDs,
images) from a MetalK8s cluster.

26.1.3 Responsibilities of each party

This section intends to define the boundaries between MetalK8s and the Solutions to integrate with, in
terms of “who is doing what?”.

Note: This is still a work in progress.

MetalK8s

MUST:

• Handle reading and mounting of the Solution ISO archive

• Provide tooling to deploy/upgrade a Solution’s CRDs, Operator and UI

MAY:

• Provide tooling to verify signatures in a Solution ISO

• Expose management of Solutions in its own UI

Solution

MUST:

• Comply with the standard archive structure defined by MetalK8s

• If providing a UI, expose management of its Operator instances

• Handle monitoring of its own services (both Operator and application, except the UI)

SHOULD:

• Use MetalK8s monitoring services (Prometheus and Grafana)

Note: Solutions can leverage the Prometheus Operator CRs for setting up the monitoring of their
components. For more information, see Monitoring and Solution Operator guidelines.

Todo: Define how Solutions can deploy Grafana dashboards.

142 Chapter 26. Integrating with MetalK8s

https://github.com/coreos/prometheus-operator

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

26.1.4 Interaction diagrams

We include a detailed interaction sequence diagram for describing how MetalK8s will handle user input
when deploying / upgrading Solutions.

Note: Open the image in a new tab to see it in full resolution.

26.1. Introduction 143

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

144 Chapter 26. Integrating with MetalK8s

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

26.2 Solution archive guidelines

To provide a predictable interface with packaged Solutions, MetalK8s expects a few criteria to be re-
spected, described below.

26.2.1 Archive format

Solution archives must use the ISO-9660:1988 format, including Rock Ridge and Joliet directory records.
The character encoding must be UTF-8. The conformance level is expected to be at most 3, meaning:

• Directory identifiers may not exceed 31 characters (bytes) in length

• File name + '.' + file name extension may not exceed 30 characters (bytes) in length

• Files are allowed to consist of multiple sections

The generated archive should specify a volume ID, set to {project_name} {version}.

Todo: Clarify whether Joliet/Rock Ridge records supersede the conformance level w.r.t. filename lengths

Here is an example invocation of the common Unix mkisofs tool to generate such archive:

mkisofs
-output my_solution.iso
-R # (or "-rock" if available)
-J # (or "-joliet" if available)
-joliet-long
-l # (or "-full-iso9660-filenames" if available)
-V 'MySolution 1.0.0' # (or "-volid" if available)
-gid 0
-uid 0
-iso-level 3
-input-charset utf-8
-output-charset utf-8
my_solution_root/

Todo: Consider if overriding the source files UID/GID to 0 is necessary

26.2.2 File hierarchy

Here is the file tree expected by MetalK8s to exist in each Solution archive:

.
images

some_image_name
1.0.1

<layer_digest>
manifest.json
version

manifest.yaml
operator

| deploy
crds

some_crd_name.yaml
role.yaml

registry-config.inc

26.2. Solution archive guidelines 145

https://www.iso.org/obp/ui/#iso:std:iso:9660:ed-1:v1:en
https://en.wikipedia.org/wiki/Rock_Ridge
https://en.wikipedia.org/wiki/Joliet_(file_system)
https://tools.ietf.org/html/rfc3629
https://linux.die.net/man/8/mkisofs

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

26.2.3 Product information

General product information about the packaged Solution must be stored in the manifest.yaml file,
stored at the archive root.

It must respect the following format (currently solutions.metalk8s.scality.com/v1alpha1, as specified
by the apiVersion value):

apiVersion: solutions.metalk8s.scality.com/v1alpha1
kind: Solution
metadata:

annotations:
solutions.metalk8s.scality.com/display-name: Solution Name

labels: {}
name: solution-name

spec:
images:

- some-extra-image:2.0.0
- solution-name-operator:1.0.0
- solution-name-ui:1.0.0

operator:
image:
name: solution-name-operator
tag: 1.0.0

ui:
image:
name: solution-name-ui
tag: 1.0.0

version: 1.0.0

Note: spec.ui is an optional key to let MetalK8s handle the deployment of the Solution UI. This mecha-
nism is deprecated and will be removed in later versions. The Operator will need to handle the deploy-
ment and lifecycle of the UI.

It is recommended for inspection purposes to include some annotations related to the build-time condi-
tions, such as the following (where command invocations should be statically replaced in the generated
manifest.yaml):

solutions.metalk8s.scality.com/build-timestamp: \
$(date -u +%Y-%m-%dT%H:%M:%SZ)

solutions.metalk8s.scality.com/git-revision: \
$(git describe --always --long --tags --dirty)

A simple script to generate this manifest can be found in MetalK8s repository examples/metalk8s-solution-
example/manifest.py, use it as follows:

./manifest.py --name "example-solution" \
--annotation "solutions.metalk8s.scality.com/build-timestamp" \
"$(date -u +%Y-%m-%dT%H:%M:%SZ)" \
--annotation "solutions.metalk8s.scality.com/build-host" "$(hostname)" \
--annotation "solutions.metalk8s.scality.com/development-release" "1" \
--annotation "solutions.metalk8s.scality.com/display-name" "Example Solution" \
--annotation "solutions.metalk8s.scality.com/git-revision" \
"$(git describe --always --long --tags --dirty)" \
--extra-image "base-server" "0.1.0-dev" \
--operator-image "example-solution-operator" "0.1.0-dev" \
--ui-image "example-solution-ui" "0.1.0-dev" \
--version "0.1.0-dev"

146 Chapter 26. Integrating with MetalK8s

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

26.2.4 OCI images

MetalK8s exposes container images in the OCI format through a static read-only registry. This registry
is built with nginx, and relies on having a specific layout of image layers to then replicate the necessary
parts of the Registry API that CRI clients (such as containerd or cri-o) rely on.

Using skopeo, images can be saved as a directory of layers:

$ mkdir images/my_image
$ # from your local Docker daemon
$ skopeo copy --format v2s2 --dest-compress docker-daemon:my_image:1.0.0 dir:images/my_image/1.0.0
$ # from Docker Hub
$ skopeo copy --format v2s2 --dest-compress docker://docker.io/example/my_image:1.0.0 dir:images/my_
→˓image/1.0.0

The images directory should now resemble this:

images
my_image

1.0.0
53071b97a88426d4db86d0e8436ac5c869124d2c414caf4c9e4a4e48769c7f37
64f5d945efcc0f39ab11b3cd4ba403cc9fefe1fa3613123ca016cf3708e8cafb
manifest.json
version

Once all the images are stored this way, de-duplication of layers can be done with hardlinks, using the
tool hardlink:

$ hardlink -c images

A detailed procedure for generating the expected layout is available at NicolasT/static-container-
registry. The script provided there, or the one vendored in this repository (located at buildchain/
static-container-registry) can be used to generate the NGINX configuration to serve these im-
age layers with the Docker Registry API. MetalK8s, when deploying the Solution, will include the
registry-config.inc file provided at the root of the archive. In order to let MetalK8s control the mount-
point of the ISO, the configuration must be generated using the following options:

$./static-container-registry.py \
--name-prefix '{{ repository }}' \
--server-root '{{ registry_root }}' \
/path/to/archive/images > /path/to/archive/registry-config.inc.j2

Each archive will be exposed as a single repository, where the name will be computed as
<metadata:name>-<spec:version> from Product information, and will be mounted at /srv/scality/
<metadata:name>-<spec:version>.

Warning: Operators should not rely on this naming pattern for finding the images for their re-
sources. Instead, the full repository endpoints will be exposed to the Operator container through a
configuration file passed to the operator binary. See Solution Operator guidelines for more details.

The images names and tags will be inferred from the directory names chosen when using skopeo copy.
Using hardlink is highly recommended if one wants to define alias tags for a single image.

MetalK8s also defines recommended standards for container images, described in Container Images.

26.2. Solution archive guidelines 147

https://github.com/opencontainers/image-spec/blob/master/spec.md
https://www.nginx.com
https://github.com/containers/skopeo
http://man7.org/linux/man-pages//man1/hardlink.1.html
https://github.com/nicolast/static-container-registry
https://github.com/nicolast/static-container-registry

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

26.2.5 Operator

See Solution Operator guidelines for how the /operator directory should be populated.

26.2.6 Web UI

Todo: Create UI guidelines and reference here

26.3 Solution Operator guidelines

An Operator is a method of packaging, deploying and managing a Kubernetes application. A
Kubernetes application is an application that is both deployed on Kubernetes and managed
using the Kubernetes APIs and kubectl tooling.

—coreos.com/operators

MetalK8s Solutions are a concept mostly centered around the Operator pattern. While there is no explicit
requirements except the ones described below (see Requirements), we recommend using the Operator
SDK as it will embed best practices from the Kubernetes community.

26.3.1 Requirements

Files

All Operator-related files except for the container images (see OCI images) should be stored under /
operator in the ISO archive. Those files should be organized as follows:

operator
deploy

crds
some_crd.yaml

role.yaml

Most of these files are generated when using the Operator SDK.

Monitoring

MetalK8s does not handle the monitoring of a Solution application, which means:

• the user, manually or through the Solution UI, should create Service and ServiceMonitor objects
for each Operator instance

• Operators should create Service and ServiceMonitor objects for each deployed component they
own

The Prometheus Operator deployed by MetalK8s has cluster-scoped permissions, and is able to read the
aforementioned ServiceMonitor objects to set up monitoring of your application services.

148 Chapter 26. Integrating with MetalK8s

https://coreos.com/operators/
https://github.com/operator-framework/operator-sdk/
https://github.com/operator-framework/operator-sdk/
https://kubernetes.io/
https://github.com/coreos/prometheus-operator

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Configuration

Solution Operator must implement a --config option which will be used by MetalK8s to provide various
useful information needed by the Operator, such as the endpoints for the container images. The given
configuration looks like:

apiVersion: solutions.metalk8s.scality.com/v1alpha1
kind: OperatorConfig
repositories:

<solution-version-x>:
- endpoint: metalk8s-registry/<solution-name>-<solution-version-x>
images:

- <image-x>:<tag-x>
- <image-y>:<tag-y>

<solution-version-y>:
- endpoint: metalk8s-registry/<solution-name>-<solution-version-y>
images:

- <image-x>:<tag-x>
- <image-y>:<tag-y>

In example, for an online installation without MetalK8s providing the repository, this configuration could
be:

apiVersion: solutions.metalk8s.scality.com/v1alpha1
kind: OperatorConfig
repositories:

1.0.0:
- endpoint: registry.scality.com/zenko
images:

- cloudserver:1.0.0
- zenko-quorum:1.0.0

- endpoint: quay.io/coreos
images:

- prometheus-operator:v0.34.0

This configuration allows the Operator to retrieve dynamically where the container images are stored for
each version of a given Solution.

Roles

Solution must ship a role.yaml file located in /operator/deploy directory. This file is a manifest which
declares all necessary Role and ClusterRole objects needed by the Operator. MetalK8s will take care
of deploying these objects, create a ServiceAccount named <solution_name>-operator and all needed
RoleBinding to bind these roles to this account.

Warning: Only Role and ClusterRole kinds are allowed in this file, the deployment of the Solution
fails if any other resource is found.

26.3. Solution Operator guidelines 149

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

26.4 Deploying And Experimenting

Given the solution ISO is correctly generated, a script utiliy has been added to manage Solutions. This
script is located at the root of Metalk8s archive:

/srv/scality/metalk8s-2.5.3-dev/solutions.sh

26.4.1 Import a Solution

Importing a Solution will mount its ISO and expose its container images.

To import a Solution into MetalK8s cluster, use the import subcommand:

./solutions.sh import --archive </path/to/solution.iso>

The --archive option can be provided multiple times to import several Solutions ISOs at the same time:

./solutions.sh import --archive </path/to/solution1.iso> \
--archive </path/to/solution2.iso>

26.4.2 Unimport a Solution

To unimport a Solution from MetalK8s cluster, use the unimport subcommand:

Warning: Images of a Solution will no longer be available after an archive removal

./solutions.sh unimport --archive </path/to/solution.iso>

26.4.3 Activate a Solution

Activating a Solution version will deploy its CRDs.

To activate a Solution in MetalK8s cluster, use the activate subcommand:

./solutions.sh activate --name <solution-name> --version <solution-version>

26.4.4 Deactivate a Solution

To deactivate a Solution from Metalk8s cluster, use the deactivate subcommand:

./solutions.sh deactivate --name <solution-name>

26.4.5 Create an Environment

To create a Solution Environment, use the create-env subcommand:

./solutions.sh create-env --name <environment-name>

By default, it will create a Namespace named after the <environment-name>, but it can be changed, using
the --namespace option:

./solutions.sh create-env --name <environment-name> \
--namespace <namespace-name>

150 Chapter 26. Integrating with MetalK8s

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

It’s also possible to use the previous command to create multiple Namespaces (one at a time) in this
Environment, allowing Solutions to run in different Namespaces.

26.4.6 Delete an Environment

To delete an Environment, use the delete-env subcommand:

Warning: This will destroy everything in the said Environment, with no way back

./solutions.sh delete-env --name <environment-name>

In case of multiple Namespaces inside an Environment, it’s also possible to only delete a single Names-
pace, using:

./solutions.sh delete-env --name <environment-name> \
--namespace <namespace-name>

26.4.7 Add a Solution in an Environment

Adding a Solution will deploy its UI and Operator resources in the Environment.

To add a Solution in an Environment, use the add-solution subcommand:

./solutions.sh add-solution --name <environment-name> \
--solution <solution-name> --version <solution-version>

In case of non-default Namespace (not corresponding to <environment-name>) or multiple Namespaces in
an Environment, Namespace in which the Solution will be added must be precised, using the --namespace
option:

./solutions.sh add-solution --name <environment-name> \
--solution <solution-name> --version <solution-version> \
--namespace <namespace-name>

26.4.8 Delete a Solution from an Environment

To delete a Solution from an Environment, use the delete-solution subcommand:

./solutions.sh delete-solution --name <environment-name> \
--solution <solution-name>

26.4.9 Upgrade/Downgrade a Solution

Before starting, the destination version must have been imported.

Patch the Environment ConfigMap, with the destination version:

kubectl patch cm metalk8s-environment --namespace <namespace-name> \
--patch '{"data": {"<solution-name>": "<solution-version-dest>"}}'

Apply the change with Salt:

26.4. Deploying And Experimenting 151

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

salt_container=$(
crictl ps -q \
--label io.kubernetes.pod.namespace=kube-system \
--label io.kubernetes.container.name=salt-master \
--state Running

)
crictl exec -i "$salt_container" salt-run state.orchestrate \

metalk8s.orchestrate.solutions.prepare-environment \
pillar="{'orchestrate': {'env_name': '<environment-name>'}}"

152 Chapter 26. Integrating with MetalK8s

Part IV

Glossary

153

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Alertmanager The Alertmanager is a service for handling alerts sent by client applications, such as
Prometheus.

See also the official Prometheus documentation for Alertmanager.

API Server

kube-apiserver The Kubernetes API Server validates and configures data for the Kubernetes objects that
make up a cluster, such as Nodes or Pods.

See also the official Kubernetes documentation for kube-apiserver.

Bootstrap

Bootstrap node The Bootstrap node is the first machine on which MetalK8s is installed, and from where
the cluster will be deployed to other machines. It also serves as the entrypoint for upgrades of the
cluster.

ConfigMap A ConfigMap is a Kubernetes object that allows one to store general configuration informa-
tion such as environment variables in a key-value pair format. ConfigMaps can only be applied to
namespaces and once created, they can be updated automatically without the need of restarting
containers that depend on it.

See also the official Kubernetes documentation for ConfigMap.

Controller Manager

kube-controller-manager The Kubernetes controller manager embeds the core control loops shipped
with Kubernetes, which role is to watch the shared state from API Server and make changes to
move the current state towards the desired state.

See also the official Kubernetes documentation for kube-controller-manager.

etcd etcd is a distributed data store, which is used in particular for the persistent storage of API Server.

For more information, see etcd.io.

Grafana Grafana is a service for analysing and visualizing metrics scraped by Prometheus.

For more information, see Grafana.

Kubeconfig A configuration file for kubectl, which includes authentication through embedded certifi-
cates.

See also the official Kubernetes documentation for kubeconfig.

Kubelet The kubelet is the primary “node agent” that runs on each cluster node.

See also the official Kubernetes documentation for kubelet.

Kube-state-metrics The kube-state-metrics service listens to the Kubernetes API server and generates
metrics about the state of the objects.

See also the official Kubernetes documentation for kube-state-metrics.

Namespace A Namespace is a Kubernetes abstraction to support multiple virtual clusters backed by the
same physical cluster, providing a scope for resource names.

See also the official Kubernetes documentation for namespaces.

Node A Node is a Kubernetes worker machine - either virtual or physical. A Node contains the services
required to run Pods.

See also the official Kubernetes documentation for Nodes.

Node manifest The YAML file describing a Node.

See also the official Kubernetes documentation for Nodes management.

Pod A Pod is a group of one or more containers sharing storage and network resources, with a specifi-
cation of how to run these containers.

See also the official Kubernetes documentation for Pods.

155

https://prometheus.io/docs/alerting/alertmanager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#understanding-configmaps-and-pods/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://etcd.io
https://grafana.com/docs/grafana/latest/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://github.com/kubernetes/kube-state-metrics/tree/master/docs/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/architecture/nodes/#management
https://kubernetes.io/docs/concepts/workloads/pods/pod/

MetalK8s Documentation, Release 2.5.2-17-g8d69e5b2c-dirty

Prometheus Prometheus serves as a time-series database, and is used in MetalK8s as the storage for all
metrics exported by applications, whether being provided by the cluster or installed afterwards.

For more details, see prometheus.io.

Prometheus Node-exporter The Prometheus node-exporter is an exporter for exposing hardware and
OS metrics read from the Linux Kernel. Users can typically obtain the following metrics; cpu,
memory, filesystem for each Kubernetes node.

or more details, see prometheus node-exporter.

SaltAPI SaltAPI is an HTTP service for exposing operations to perform with a Salt Master. The version
deployed by MetalK8s is configured to use the cluster authentication/authorization services.

See also the official SaltStack documentation for SaltAPI.

Salt Master The Salt Master is a daemon responsible for orchestrating infrastructure changes by man-
aging a set of Salt Minions.

See also the official SaltStack documentation for Salt Master.

Salt Minion The Salt Minion is an agent responsible for operating changes on a system. It runs on all
MetalK8s nodes.

See also the official SaltStack documentation for Salt Minion.

Scheduler

kube-scheduler The Kubernetes scheduler is responsible for assigning Pods to specific Nodes using a
complex set of constraints and requirements.

See also the official Kubernetes documentation for kube-scheduler.

Service A Kubernetes Service is an abstract way to expose an application running on a set of Pods as a
network service.

See also the official Kubernetes documentation for Services.

Taint Taints are a system for Kubernetes to mark Nodes as reserved for a specific use-case. They are used
in conjunction with tolerations.

See also the official Kubernetes documentation for taints and tolerations.

Toleration Tolerations allow to mark Pods as schedulable for all Nodes matching some filter, described
with taints.

See also the official Kubernetes documentation for taints and tolerations.

kubectl kubectl is a CLI interface for interacting with a Kubernetes cluster.

See also the official Kubernetes documentation for kubectl.

156

https://prometheus.io
https://prometheus.io/docs/guides/node-exporter
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#a-rest-api-for-salt
https://docs.saltstack.com/en/latest/topics/development/architecture.html#salt-master
https://docs.saltstack.com/en/latest/topics/development/architecture.html#salt-minion
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-scheduler/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/reference/kubectl/kubectl/

INDEX

A
Alertmanager, 155
API Server, 155

B
Bootstrap, 155
Bootstrap node, 155

C
ConfigMap, 155
Controller Manager, 155

E
etcd, 155

G
Grafana, 155

K
kube-apiserver, 155
kube-controller-manager, 155
kube-scheduler, 156
Kube-state-metrics, 155
Kubeconfig, 155
kubectl, 156
Kubelet, 155

N
Namespace, 155
Node, 155
Node manifest, 155

P
Pod, 155
Prometheus, 156
Prometheus Node-exporter, 156

S
Salt Master, 156
Salt Minion, 156
SaltAPI, 156
Scheduler, 156
Service, 156

T
Taint, 156
Toleration, 156

157

	I Installation
	Introduction
	Prerequisites
	Deployment of the Bootstrap node
	Cluster expansion
	Post-Installation Procedure
	Accessing Cluster Services

	II Operational Guide
	Bootstrap Node Backup and Restoration Procedure
	Enable IP-in-IP encapsulation
	ISO Preparation
	Solutions Guide
	Upgrade Guide
	Downgrade Guide
	Supported Versions
	Downgrade Pre-requisites
	Downgrade Steps
	Changing the hostname of a MetalK8s node
	Volume Management
	Account Administration
	Cluster and Services Configurations
	Cluster Monitoring
	Troubleshooting Guide

	III Developer Guide
	Architecture Documents
	How to build MetalK8s
	How to run components locally
	Development
	Integrating with MetalK8s

	IV Glossary
	Index

