

Welcome to the MetalK8s documentation!

MetalK8s [https://github.com/scality/metal-k8s/] is an opinionated Kubernetes [https://kubernetes.io] distribution with a focus on long-term
on-prem deployments, launched by Scality [https://www.scality.com] to deploy its Zenko [https://www.zenko.io] solution in
customer datacenters.

It is based on the Kubespray [https://github.com/kubernetes-incubator/kubespray/] project to reliably install a base Kubernetes
cluster, including all dependencies (like etcd [https://coreos.com/etcd/]), using the Ansible [https://www.ansible.com]
provisioning tool. This installation is further augmented with operational
tools for monitoring and metering, including Prometheus [https://prometheus.io], Grafana [https://grafana.com],
ElasticSearch [https://www.elastic.co/products/elasticsearch/] and Kibana [https://www.elastic.co/products/kibana/]. Furthermore, an “ingress controller” is deployed
by default, based on Nginx [http://nginx.org]. All of these are managed as Helm [https://www.helm.sh] packages. See
Cluster Services for a whole listing.

Unlike hosted Kubernetes solutions, where network-attached storage is available
and managed by the provider, we assume no such system to be available in
environments where MetalK8s is deployed. As such, we focus on managing
node-local storage, and exposing these volumes to containers managed in the
cluster. See Storage Architecture for more information.

Getting started

See our Quickstart Guide to deploy a cluster.

Contents:

	Quickstart Guide
	Defining an Inventory

	Entering the MetalK8s Shell

	Inspecting the cluster

	Cluster Services

	Architecture
	Cluster Services

	Storage Architecture

	Changes in MetalK8s
	Release 0.1.1

	Release 0.1.0

Indices and tables

	Index

	Module Index

	Search Page

Quickstart Guide

To quickly set up a testing cluster using MetalK8s [https://github.com/scality/metal-k8s/], you need 3 machines running
CentOS [https://www.centos.org] 7.4 to which you have SSH access (these can be VMs). Each machine
acting as a Kubernetes [https://kubernetes.io] node (all of them, in this example) also need to have at
least one disk available to provision storage volumes.

Todo

Give some sizing examples

Defining an Inventory

To tell the Ansible [https://www.ansible.com]-based deployment system on which machines MetalK8s should
be installed, a so-called inventory needs to be provided. This inventory
contains a file listing all the hosts comprising the cluster, as well as some
configuration.

First, create a directory, e.g. inventory/quickstart-cluster, in which
the inventory will be stored. For our setup, we need to create two files. One
listing all the hosts, aptly called hosts:

node-01 ansible_host=10.0.0.1 ansible_user=centos
node-02 ansible_host=10.0.0.2 ansible_user=centos
node-03 ansible_host=10.0.0.3 ansible_user=centos

[kube-master]
node-01
node-02
node-03

[etcd]
node-01
node-02
node-03

[kube-node]
node-01
node-02
node-03

[k8s-cluster:children]
kube-node
kube-master

Make sure to change IP-addresses, usernames etc. according to your
infrastructure.

In a second file, called kube-node.yml in a group_vars
subdirectory of our inventory, we declare how to setup storage (in the
default configuration) on hosts in the kube-node group, i.e. hosts on which
Pods will be scheduled:

metal_k8s_lvm:
 vgs:
 kubevg:
 drives: ['/dev/vdb']

In the above, we assume every kube-node host has a disk available as
/dev/vdb which can be used to set up Kubernetes PersistentVolumes. For
more information about storage, see Storage Architecture.

Entering the MetalK8s Shell

To easily install a supported version of Ansible and its dependencies, as well
as some Kubernetes tools (kubectl and helm), we provide a
make target which installs these in a local environment. To enter this
environment, run make shell (this takes a couple of seconds on first
run):

$ make shell
Creating virtualenv...
Installing Python dependencies...
Downloading kubectl...
Downloading Helm...
Launching MetalK8s shell environment. Run 'exit' to quit.
(metal-k8s) $

Now we’re all set to deploy a cluster:

(metal-k8s) $ ansible-playbook -i inventory/quickstart-cluster -b playbooks/deploy.yml

Grab a coffee and wait for deployment to end.

Inspecting the cluster

Once deployment finished, a file containing credentials to access the cluster is
created: inventory/quickstart-cluster/artifacts/admin.conf. We can
export this location in the shell such that the kubectl and
helm tools know how to contact the cluster kube-master nodes, and
authenticate properly:

(metal-k8s) $ export KUBECONFIG=`pwd`/inventory/quickstart-cluster/artifacts/admin.conf

Now, assuming port 6443 on the first kube-master node is reachable from your
system, we can e.g. list the nodes:

(metal-k8s) $ kubectl get nodes
NAME STATUS ROLES AGE VERSION
node-01 Ready master,node 1m v1.9.5+coreos.0
node-02 Ready master,node 1m v1.9.5+coreos.0
node-03 Ready master,node 1m v1.9.5+coreos.0

or list all pods:

(metal-k8s) $ kubectl get pods --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS AGE
kube-ingress nginx-ingress-controller-9d8jh 1/1 Running 0 1m
kube-ingress nginx-ingress-controller-d7vvg 1/1 Running 0 1m
kube-ingress nginx-ingress-controller-m8jpq 1/1 Running 0 1m
kube-ingress nginx-ingress-default-backend-6664bc64c9-xsws5 1/1 Running 0 1m
kube-ops alertmanager-kube-prometheus-0 2/2 Running 0 2m
kube-ops alertmanager-kube-prometheus-1 2/2 Running 0 2m
kube-ops es-client-7cf569f5d8-2z974 1/1 Running 0 2m
kube-ops es-client-7cf569f5d8-qq4h2 1/1 Running 0 2m
kube-ops es-data-cd5446fff-pkmhn 1/1 Running 0 2m
kube-ops es-data-cd5446fff-zzd2h 1/1 Running 0 2m
kube-ops es-exporter-elasticsearch-exporter-7df5bcf58b-k9fdd 1/1 Running 3 1m
...

Similarly, we can list all deployed Helm [https://www.helm.sh] applications:

(metal-k8s) $ helm list
NAME REVISION UPDATED STATUS CHART NAMESPACE
es-exporter 3 Wed Apr 25 23:10:13 2018 DEPLOYED elasticsearch-exporter-0.1.2 kube-ops
fluentd 3 Wed Apr 25 23:09:59 2018 DEPLOYED fluentd-elasticsearch-0.1.4 kube-ops
heapster 3 Wed Apr 25 23:09:37 2018 DEPLOYED heapster-0.2.7 kube-system
kibana 3 Wed Apr 25 23:10:06 2018 DEPLOYED kibana-0.2.2 kube-ops
kube-prometheus 3 Wed Apr 25 23:09:22 2018 DEPLOYED kube-prometheus-0.0.33 kube-ops
nginx-ingress 3 Wed Apr 25 23:09:09 2018 DEPLOYED nginx-ingress-0.11.1 kube-ingress
prometheus-operator 3 Wed Apr 25 23:09:14 2018 DEPLOYED prometheus-operator-0.0.15 kube-ops

Cluster Services

Various services to operate and monitor your MetalK8s cluster are provided. To
access these, first create a secure tunnel into your cluster by running
kubectl proxy. Then, while the tunnel is up and running, the following tools
are available:

	Service

	Role

	Link

	Notes

	Kubernetes dashboard [https://github.com/kubernetes/dashboard]

	A general purpose, web-based UI for Kubernetes clusters

	http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/

	

	Grafana [https://grafana.com]

	Monitoring dashboards for cluster services

	http://localhost:8001/api/v1/namespaces/kube-ops/services/kube-prometheus-grafana:http/proxy/

	

	Cerebro [https://github.com/lmenezes/cerebro]

	An administration and monitoring console for
Elasticsearch clusters

	http://localhost:8001/api/v1/namespaces/kube-ops/services/cerebro:http/proxy/

	When accessing Cerebro, connect it to
http://elasticsearch:9200 to operate
the MetalK8s Elasticsearch cluster.

	Kibana [https://www.elastic.co/products/kibana/]

	A search console for logs indexed in Elasticsearch

	http://localhost:8001/api/v1/namespaces/kube-ops/services/http:kibana:/proxy/

	When accessing Kibana for the first
time, set up an index pattern for
the logstash-* index, using the
@timestamp field as Time Filter
field name.

See Cluster Services for more information about these
services and their configuration.

Architecture

Contents:

	Cluster Services
	Basic Cluster Addons

	Ingress Controller

	Metering / Monitoring

	Log Collection

	Storage Architecture

Cluster Services

A Kubernetes [https://kubernetes.io] cluster deployed on the Google Cloud Platform [https://cloud.google.com] using GKE [https://cloud.google.com/kubernetes-engine/], on
Microsoft Azure [https://azure.microsoft.com] using AKS [https://docs.microsoft.com/en-us/azure/aks/] or even using Kops [https://github.com/kubernetes/kops/] or similar tools on Amazon
AWS [https://aws.amazon.com] comes with built-in tooling for centralized container log management,
metrics collection, tracing, node health checking and more.

In MetalK8s [https://github.com/scality/metal-k8s/], we augment a basic Kubernetes cluster deployed using the
Kubespray [https://github.com/kubernetes-incubator/kubespray/] playbook) with various tools to bring an on-premise cluster to the
same level of operability.

Basic Cluster Addons

On top of the basic Kubernetes services, the following addons are deployed:

Helm / Tiller

Helm [https://www.helm.sh] is a package manager for Kubernetes. It can be used to deploy various
services in a Kubernetes cluster using templates to describe objects. Tiller
is a cluster-side service used by the helm CLI tool to manage these
deployments.

Heapster

Heapster [https://github.com/kubernetes/heapster] is a service which collects and exposes resource consumption metrics
of containers running in a cluster. The Kubernetes Dashboard uses the Heapster
service, when available, to display CPU and memory usage of Pods, Deployments
and more.

metrics-server

The metrics-server [https://github.com/kubernetes-incubator/metrics-server] service is derived from Heapster, and provides an
implementation of the Metrics API [https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/resource-metrics-api.md] exposing CPU and memory consumption of
containers. These metrics are in turn used by the HorizontalPodAutoscaler [https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/]
controller.

Ingress Controller

To expose Services [https://kubernetes.io/docs/concepts/services-networking/service/] to the outside world using an Ingress [https://kubernetes.io/docs/concepts/services-networking/ingress/] object, Kubernetes
requires an Ingress Controller [https://kubernetes.io/docs/concepts/services-networking/ingress/#ingress-controllers] to be running in the cluster. For this
purpose, MetalK8s deploys the nginx-ingress-controller [https://github.com/kubernetes/ingress-nginx], which uses the
well-known Nginx [http://nginx.org] HTTP server under the hood.

Metering / Monitoring

Metering and monitoring of a MetalK8s cluster is handled by the Prometheus [https://prometheus.io]
stack, including the Prometheus TSDB for metrics storage, Alertmanager [https://prometheus.io/docs/alerting/alertmanager/] to send
alerts when preconfigured conditions are (not) met, and Grafana [https://grafana.com] to visualize
stored metrics using predefined dashboards.

prometheus-operator

The CoreOS [https://coreos.com] Prometheus Operator [https://coreos.com/operators/prometheus/] is deployed in the cluster to manage
Prometheus instances, scrape targets and alerting rules.

kube-prometheus

We use kube-prometheus [https://github.com/coreos/prometheus-operator/tree/master/contrib/kube-prometheus] to provide operational insight into the Kubernetes
cluster and containers managed by it. This includes predefined alerting rules
and various Grafana dashboards.

kube-prometheus uses prometheus-operator to deploy all required services.

node-exporter

The node-exporter [https://github.com/prometheus/node_exporter] service is deployed to expose various node OS metrics, which
are in turn captured by Prometheus. These metrics include CPU, memory, disk and
network consumption as well as many Linux-specific values.

Grafana

To ease cluster operations, several Grafana dashboards are made available,
including cluster-wide views and health-checks, node OS metrics,
per-Deployment or per-Pod resource usage, monitoring of the Prometheus
service itself, and many more.

Todo

Do we need to list all exported deployed with kube-prometheus?

Log Collection

ElasticSearch

The ElasticSearch [https://www.elastic.co/products/elasticsearch/] full-text indexing service is used to ingest all container
logs in a central place, and make them accessible to operators. This
ElasticSearch cluster is deployed using the manifests provided in
pires/kubernetes-elasticsearch-cluster, which are tuned to use
production-grade settings.

Cerebro

The Cerebro [https://github.com/lmenezes/cerebro] dashboard is a monitoring and administration tool for Elasticsearch
clusters.

ElasticSearch Curator

To ensure ingested logs don’t flood the ElasticSearch resources, ElasticSearch
Curator [https://www.elastic.co/guide/en/elasticsearch/client/curator/current/index.html] is deployed with a default configuration which drops logstash-*
indices on a given schedule.

fluentd

The fluentd [https://www.fluentd.org] service is deployed as a DaemonSet [https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/] to stream all container
logs into ElasticSearch.

In MetalK8s, fluentd has a role similar to Logstash [https://www.elastic.co/products/logstash/] in the ELK
stack.

Kibana

To give operators access to the logs stored in ElasticSearch, a Kibana [https://www.elastic.co/products/kibana/]
instance is provided.

Note

When accessing Kibana for the first time, an index pattern for the
logstash-* indices needs to be configured, using @timestamp as Time
Filter field name.

Storage Architecture

Changes in MetalK8s

Release 0.1.1

Note

Compatibility with future releases of MetalK8s is not guaranteed until
version 1.0.0 is available. When deploying a cluster using pre-1.0 versions
of this package, you may need to redeploy later.

Features added

PR #11 [https://github.com/Scality/metal-k8s/pull/11/] - run the OpenStack ansible-hardening [https://github.com/openstack/ansible-hardening] role on nodes to apply
security hardening configurations from the
Security Technical Implementation Guide (STIG) [http://iase.disa.mil/stigs/Pages/index.aspx] (#88 [https://github.com/Scality/metal-k8s/issues/88/])

PR #127 [https://github.com/Scality/metal-k8s/pull/127/] - deploy Cerebro [https://github.com/lmenezes/cerebro] to manage the Elasticsearch cluster
(#126 [https://github.com/Scality/metal-k8s/issues/126/])

PR #138 [https://github.com/Scality/metal-k8s/pull/138/] - update versions of Fluentd [https://www.fluentd.org], Kibana [https://www.elastic.co/products/kibana], Elasticsearch Exporter [https://github.com/justwatchcom/elasticsearch_exporter]
and Kubespray [https://github.com/kubernetes-incubator/kubespray/]

PR #140 [https://github.com/Scality/metal-k8s/pull/140/] - set up kube-prometheus [https://github.com/coreos/prometheus-operator/tree/master/contrib/kube-prometheus] to monitor CoreDNS [https://coredns.io/] (cfr. PR #104 [https://github.com/Scality/metal-k8s/pull/104/])

Bugs fixed

#103 [https://github.com/Scality/metal-k8s/issues/103/] - set up host anti-affinity for Elasticsearch service scheduling
(PR #113 [https://github.com/Scality/metal-k8s/pull/113/])

#120 [https://github.com/Scality/metal-k8s/issues/120/] - required facts not gathered when running the services
playbook in isolation (PR #132 [https://github.com/Scality/metal-k8s/pull/132/])

PR #134 [https://github.com/Scality/metal-k8s/pull/134/] - fix bash-completion in the MetalK8s Docker image

Release 0.1.0

This marks the first release of MetalK8s [https://github.com/Scality/metal-k8s].

Note

Compatibility with future releases of MetalK8s is not guaranteed until
version 1.0.0 is available. When deploying a cluster using pre-1.0 versions
of this package, you may need to redeploy later.

Incompatible changes

PR #106 [https://github.com/Scality/metal-k8s/pull/106/] - the Ansible playbook which used to be called
metal-k8s.yml has been moved to playbooks/deploy.yml

Features added

PR #100 [https://github.com/Scality/metal-k8s/pull/100/] - disable Elasticsearch deployment by setting
metalk8s_elasticsearch_enabled to false (#98 [https://github.com/Scality/metal-k8s/issues/98/])

PR #104 [https://github.com/Scality/metal-k8s/pull/104/] - kube-proxy now uses ipvs instead of iptables to route
Service addresses, in preparation for Kubernetes 1.11. The ipvsadm tool is
installed on all k8s-cluster hosts.

PR #104 [https://github.com/Scality/metal-k8s/pull/104/] - use CoreDNS instead of kubedns for in-cluster DNS services, in
preparation for Kubernetes 1.11.

PR #113 [https://github.com/Scality/metal-k8s/pull/113/] - deploy the Prometheus node_exporter on k8s-cluster and
etcd hosts instead of using a DaemonSet

Known issues

#62 [https://github.com/Scality/metal-k8s/issues/62/] - Elasticsearch Curator may not properly prune old logstash-*
indices

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to the MetalK8s documentation!

 		
 Quickstart Guide

 		
 Defining an Inventory

 		
 Entering the MetalK8s Shell

 		
 Inspecting the cluster

 		
 Cluster Services

 		
 Architecture

 		
 Cluster Services

 		
 Basic Cluster Addons

 		
 Ingress Controller

 		
 Metering / Monitoring

 		
 Log Collection

 		
 Storage Architecture

 		
 Changes in MetalK8s

 		
 Release 0.1.1

 		
 Release 0.1.0

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

