
MetalK8s Documentation
Release 0.2.0-dev

Scality

Jul 23, 2018

Contents:

1 Getting started 3
1.1 Quickstart Guide . 3
1.2 Architecture . 7
1.3 Changes in MetalK8s . 10

2 Indices and tables 13

i

ii

MetalK8s Documentation, Release 0.2.0-dev

MetalK8s is an opinionated Kubernetes distribution with a focus on long-term on-prem deployments, launched by
Scality to deploy its Zenko solution in customer datacenters.

It is based on the Kubespray project to reliably install a base Kubernetes cluster, including all dependencies (like etcd),
using the Ansible provisioning tool. This installation is further augmented with operational tools for monitoring and
metering, including Prometheus, Grafana, ElasticSearch and Kibana. Furthermore, an “ingress controller” is deployed
by default, based on Nginx. All of these are managed as Helm packages. See Cluster Services for a whole listing.

Unlike hosted Kubernetes solutions, where network-attached storage is available and managed by the provider, we
assume no such system to be available in environments where MetalK8s is deployed. As such, we focus on managing
node-local storage, and exposing these volumes to containers managed in the cluster. See Storage Architecture for
more information.

Contents: 1

https://github.com/scality/metal-k8s/
https://kubernetes.io
https://www.scality.com
https://www.zenko.io
https://github.com/kubernetes-incubator/kubespray/
https://coreos.com/etcd/
https://www.ansible.com
https://prometheus.io
https://grafana.com
https://www.elastic.co/products/elasticsearch/
https://www.elastic.co/products/kibana/
http://nginx.org
https://www.helm.sh

MetalK8s Documentation, Release 0.2.0-dev

2 Contents:

CHAPTER 1

Getting started

See our Quickstart Guide to deploy a cluster.

1.1 Quickstart Guide

To quickly set up a testing cluster using MetalK8s, you need 3 machines running CentOS 7.4 to which you have SSH
access (these can be VMs). Each machine acting as a Kubernetes node (all of them, in this example) also need to have
at least one disk available to provision storage volumes.

Todo: Give some sizing examples

1.1.1 Defining an Inventory

To tell the Ansible-based deployment system on which machines MetalK8s should be installed, a so-called inventory
needs to be provided. This inventory contains a file listing all the hosts comprising the cluster, as well as some
configuration.

First, create a directory, e.g. inventory/quickstart-cluster, in which the inventory will be stored. For our
setup, we need to create two files. One listing all the hosts, aptly called hosts:

node-01 ansible_host=10.0.0.1 ansible_user=centos
node-02 ansible_host=10.0.0.2 ansible_user=centos
node-03 ansible_host=10.0.0.3 ansible_user=centos

[kube-master]
node-01
node-02
node-03

[etcd]
(continues on next page)

3

https://github.com/scality/metal-k8s/
https://www.centos.org
https://kubernetes.io
https://www.ansible.com

MetalK8s Documentation, Release 0.2.0-dev

(continued from previous page)

node-01
node-02
node-03

[kube-node]
node-01
node-02
node-03

[k8s-cluster:children]
kube-node
kube-master

Make sure to change IP-addresses, usernames etc. according to your infrastructure.

In a second file, called kube-node.yml in a group_vars subdirectory of our inventory, we declare how to setup
storage (in the default configuration) on hosts in the kube-node group, i.e. hosts on which Pods will be scheduled:

metalk8s_lvm_drives_vg_metalk8s: ['/dev/vdb']

In the above, we assume every kube-node host has a disk available as /dev/vdb which can be used to set up Kuber-
netes PersistentVolumes. For more information about storage, see Storage Architecture.

1.1.2 Upgrading from MetalK8s < 0.2.0

The storage configuration changed in a non-backward compatible way on MetalK8s 0.2.0 release. The old configura-
tion will trigger an error when the playbook playbooks/deploy.yml is run.

An old configuration looking like this

metal_k8s_lvm:
vgs:
kubevg:

drives: ['/dev/vdb']

would become

metalk8s_lvm_default_vg: False
metalk8s_lvm_vgs: ['kubevg']
metalk8s_lvm_drives_kubevg: ['/dev/vdb']
metalk8s_lvm_lvs_kubevg:

lv01:
size: 52G

lv02:
size: 52G

lv03:
size: 52G

lv04:
size: 11G

lv05:
size: 11G

lv06:
size: 11G

lv07:
size: 5G

(continues on next page)

4 Chapter 1. Getting started

MetalK8s Documentation, Release 0.2.0-dev

(continued from previous page)

lv08:
size: 5G

A quick explanation of these new variables and why they are required

• metalk8s_lvm_default_vg: The value False will ensure that we disable all automatic logic behind configuring
the storage

• metalk8s_lvm_vgs: This is a list of the LVM VGs managed by MetalK8s

• metalk8s_lvm_drives_kubevg: This variable is a concatenation of the prefix metalk8s_lvm_drives_ and the name
of the LVM VG. It is used to specify the drives used for this LVM VG

• metalk8s_lvm_lvs_kubevg: This variable is a concatenation of the prefix metalk8s_lvm_lvs_ and the name of
the LVM VG. It is used to specify the LVM LVs created in this LVM VG.

1.1.3 Entering the MetalK8s Shell

To easily install a supported version of Ansible and its dependencies, as well as some Kubernetes tools (kubectl and
helm), we provide a make target which installs these in a local environment. To enter this environment, run make
shell (this takes a couple of seconds on first run):

$ make shell
Creating virtualenv...
Installing Python dependencies...
Downloading kubectl...
Downloading Helm...
Launching MetalK8s shell environment. Run 'exit' to quit.
(metal-k8s) $

Now we’re all set to deploy a cluster:

(metal-k8s) $ ansible-playbook -i inventory/quickstart-cluster -b playbooks/deploy.yml

Grab a coffee and wait for deployment to end.

1.1.4 Inspecting the cluster

Once deployment finished, a file containing credentials to access the cluster is created: inventory/
quickstart-cluster/artifacts/admin.conf. We can export this location in the shell such that the
kubectl and helm tools know how to contact the cluster kube-master nodes, and authenticate properly:

(metal-k8s) $ export KUBECONFIG=`pwd`/inventory/quickstart-cluster/artifacts/admin.
→˓conf

Now, assuming port 6443 on the first kube-master node is reachable from your system, we can e.g. list the nodes:

(metal-k8s) $ kubectl get nodes
NAME STATUS ROLES AGE VERSION
node-01 Ready master,node 1m v1.9.5+coreos.0
node-02 Ready master,node 1m v1.9.5+coreos.0
node-03 Ready master,node 1m v1.9.5+coreos.0

or list all pods:

1.1. Quickstart Guide 5

MetalK8s Documentation, Release 0.2.0-dev

(metal-k8s) $ kubectl get pods --all-namespaces
NAMESPACE NAME READY
→˓STATUS RESTARTS AGE
kube-ingress nginx-ingress-controller-9d8jh 1/1
→˓Running 0 1m
kube-ingress nginx-ingress-controller-d7vvg 1/1
→˓Running 0 1m
kube-ingress nginx-ingress-controller-m8jpq 1/1
→˓Running 0 1m
kube-ingress nginx-ingress-default-backend-6664bc64c9-xsws5 1/1
→˓Running 0 1m
kube-ops alertmanager-kube-prometheus-0 2/2
→˓Running 0 2m
kube-ops alertmanager-kube-prometheus-1 2/2
→˓Running 0 2m
kube-ops es-client-7cf569f5d8-2z974 1/1
→˓Running 0 2m
kube-ops es-client-7cf569f5d8-qq4h2 1/1
→˓Running 0 2m
kube-ops es-data-cd5446fff-pkmhn 1/1
→˓Running 0 2m
kube-ops es-data-cd5446fff-zzd2h 1/1
→˓Running 0 2m
kube-ops es-exporter-elasticsearch-exporter-7df5bcf58b-k9fdd 1/1
→˓Running 3 1m
...

Similarly, we can list all deployed Helm applications:

(metal-k8s) $ helm list
NAME REVISION UPDATED STATUS
→˓ CHART NAMESPACE
es-exporter 3 Wed Apr 25 23:10:13 2018 DEPLOYED
→˓ elasticsearch-exporter-0.1.2 kube-ops
fluentd 3 Wed Apr 25 23:09:59 2018 DEPLOYED
→˓ fluentd-elasticsearch-0.1.4 kube-ops
heapster 3 Wed Apr 25 23:09:37 2018 DEPLOYED
→˓ heapster-0.2.7 kube-system
kibana 3 Wed Apr 25 23:10:06 2018 DEPLOYED
→˓ kibana-0.2.2 kube-ops
kube-prometheus 3 Wed Apr 25 23:09:22 2018 DEPLOYED
→˓ kube-prometheus-0.0.33 kube-ops
nginx-ingress 3 Wed Apr 25 23:09:09 2018 DEPLOYED
→˓ nginx-ingress-0.11.1 kube-ingress
prometheus-operator 3 Wed Apr 25 23:09:14 2018 DEPLOYED
→˓ prometheus-operator-0.0.15 kube-ops

1.1.5 Cluster Services

Various services to operate and monitor your MetalK8s cluster are provided. To access these, first create a secure
tunnel into your cluster by running kubectl proxy. Then, while the tunnel is up and running, the following tools
are available:

6 Chapter 1. Getting started

https://www.helm.sh

MetalK8s Documentation, Release 0.2.0-dev

Ser-
vice

Role Link Notes

Ku-
ber-
netes
dash-
board

A general purpose,
web-based UI for
Kubernetes clusters

http://localhost:8001/
api/v1/namespaces/
kube-system/services/https:
kubernetes-dashboard:/proxy/

Grafana Monitoring dash-
boards for cluster
services

http://localhost:8001/
api/v1/namespaces/
kube-ops/services/
kube-prometheus-grafana:
http/proxy/

Cere-
bro

An administration
and monitoring
console for Elastic-
search clusters

http://localhost:8001/api/
v1/namespaces/kube-ops/
services/cerebro:http/proxy/

When accessing Cerebro, connect it to http:
//elasticsearch:9200 to operate the MetalK8s
Elasticsearch cluster.

Kibana A search console for
logs indexed in Elas-
ticsearch

http://localhost:8001/api/
v1/namespaces/kube-ops/
services/http:kibana:/proxy/

When accessing Kibana for the first time, set
up an index pattern for the logstash-* in-
dex, using the @timestamp field as Time Fil-
ter field name.

See Cluster Services for more information about these services and their configuration.

1.2 Architecture

1.2.1 Cluster Services

A Kubernetes cluster deployed on the Google Cloud Platform using GKE, on Microsoft Azure using AKS or even
using Kops or similar tools on Amazon AWS comes with built-in tooling for centralized container log management,
metrics collection, tracing, node health checking and more.

In MetalK8s, we augment a basic Kubernetes cluster deployed using the Kubespray playbook) with various tools to
bring an on-premise cluster to the same level of operability.

Basic Cluster Addons

On top of the basic Kubernetes services, the following addons are deployed:

Helm / Tiller

Helm is a package manager for Kubernetes. It can be used to deploy various services in a Kubernetes cluster using
templates to describe objects. Tiller is a cluster-side service used by the helm CLI tool to manage these deployments.

Heapster

Heapster is a service which collects and exposes resource consumption metrics of containers running in a cluster.
The Kubernetes Dashboard uses the Heapster service, when available, to display CPU and memory usage of Pods,
Deployments and more.

1.2. Architecture 7

https://github.com/kubernetes/dashboard
https://github.com/kubernetes/dashboard
https://github.com/kubernetes/dashboard
https://github.com/kubernetes/dashboard
https://github.com/kubernetes/dashboard
http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/
http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/
http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/
http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/
https://grafana.com
http://localhost:8001/api/v1/namespaces/kube-ops/services/kube-prometheus-grafana:http/proxy/
http://localhost:8001/api/v1/namespaces/kube-ops/services/kube-prometheus-grafana:http/proxy/
http://localhost:8001/api/v1/namespaces/kube-ops/services/kube-prometheus-grafana:http/proxy/
http://localhost:8001/api/v1/namespaces/kube-ops/services/kube-prometheus-grafana:http/proxy/
http://localhost:8001/api/v1/namespaces/kube-ops/services/kube-prometheus-grafana:http/proxy/
https://github.com/lmenezes/cerebro
https://github.com/lmenezes/cerebro
http://localhost:8001/api/v1/namespaces/kube-ops/services/cerebro:http/proxy/
http://localhost:8001/api/v1/namespaces/kube-ops/services/cerebro:http/proxy/
http://localhost:8001/api/v1/namespaces/kube-ops/services/cerebro:http/proxy/
http://elasticsearch:9200
http://elasticsearch:9200
https://www.elastic.co/products/kibana/
http://localhost:8001/api/v1/namespaces/kube-ops/services/http:kibana:/proxy/
http://localhost:8001/api/v1/namespaces/kube-ops/services/http:kibana:/proxy/
http://localhost:8001/api/v1/namespaces/kube-ops/services/http:kibana:/proxy/
https://kubernetes.io
https://cloud.google.com
https://cloud.google.com/kubernetes-engine/
https://azure.microsoft.com
https://docs.microsoft.com/en-us/azure/aks/
https://github.com/kubernetes/kops/
https://aws.amazon.com
https://github.com/scality/metal-k8s/
https://github.com/kubernetes-incubator/kubespray/
https://www.helm.sh
https://github.com/kubernetes/heapster

MetalK8s Documentation, Release 0.2.0-dev

metrics-server

The metrics-server service is derived from Heapster, and provides an implementation of the Metrics API exposing CPU
and memory consumption of containers. These metrics are in turn used by the HorizontalPodAutoscaler controller.

Ingress Controller

To expose Services to the outside world using an Ingress object, Kubernetes requires an Ingress Controller to be
running in the cluster. For this purpose, MetalK8s deploys the nginx-ingress-controller, which uses the well-known
Nginx HTTP server under the hood.

Metering / Monitoring

Metering and monitoring of a MetalK8s cluster is handled by the Prometheus stack, including the Prometheus TSDB
for metrics storage, Alertmanager to send alerts when preconfigured conditions are (not) met, and Grafana to visualize
stored metrics using predefined dashboards.

prometheus-operator

The CoreOS Prometheus Operator is deployed in the cluster to manage Prometheus instances, scrape targets and
alerting rules.

kube-prometheus

We use kube-prometheus to provide operational insight into the Kubernetes cluster and containers managed by it. This
includes predefined alerting rules and various Grafana dashboards.

kube-prometheus uses prometheus-operator to deploy all required services.

node-exporter

The node-exporter service is deployed to expose various node OS metrics, which are in turn captured by Prometheus.
These metrics include CPU, memory, disk and network consumption as well as many Linux-specific values.

Grafana

To ease cluster operations, several Grafana dashboards are made available, including cluster-wide views and health-
checks, node OS metrics, per-Deployment or per-Pod resource usage, monitoring of the Prometheus service itself, and
many more.

Todo: Do we need to list all exported deployed with kube-prometheus?

8 Chapter 1. Getting started

https://github.com/kubernetes-incubator/metrics-server
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/resource-metrics-api.md
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/#ingress-controllers
https://github.com/kubernetes/ingress-nginx
http://nginx.org
https://prometheus.io
https://prometheus.io/docs/alerting/alertmanager/
https://grafana.com
https://coreos.com
https://coreos.com/operators/prometheus/
https://github.com/coreos/prometheus-operator/tree/master/contrib/kube-prometheus
https://github.com/prometheus/node_exporter

MetalK8s Documentation, Release 0.2.0-dev

Log Collection

ElasticSearch

The ElasticSearch full-text indexing service is used to ingest all container logs in a central place, and make them
accessible to operators. This ElasticSearch cluster is deployed using the Helm chart, with a configuration tuned for
production-grade settings.

Cerebro

The Cerebro dashboard is a monitoring and administration tool for Elasticsearch clusters.

ElasticSearch Curator

To ensure ingested logs don’t flood the ElasticSearch resources, ElasticSearch Curator is deployed with a default
configuration which drops logstash-* indices on a given schedule.

Fluent Bit and fluentd

The Fluent Bit service is deployed as a DaemonSet to stream all container logs into fluentd instances, which collect
them and submit batches to Elasticsearch.

In MetalK8s, Fluent Bit and fluentd have a role similar to Logstash in the ELK stack.

Kibana

To give operators access to the logs stored in ElasticSearch, a Kibana instance is provided.

Note: When accessing Kibana for the first time, an index pattern for the logstash-* indices needs to be configured,
using @timestamp as Time Filter field name.

1.2.2 Storage Architecture

MetalK8s current strage architecture rely on local storage, configured with LVM for its purpose.

A default setup, satisfying the storage needs of MetalK8s is automatically setup by default and can be easily extended
through the various configuration items exposed by the tool.

Glossary

• LVM PV: The LVM Physical Volume. This is the disk or the partition provided to LVM to create the LVM
Volume Group

• LVM VG : The LVM Volume Group. This is the logical unit of LVM aggregating the LVM Physical Volumes
into one single logical entity

• LVM LV: A Logical Volume. This is where the filesystem will be created. Several LVM LVs can be created on
a single LVM VG

1.2. Architecture 9

https://www.elastic.co/products/elasticsearch/
https://github.com/kubernetes/charts/tree/master/incubator/elasticsearch
https://github.com/lmenezes/cerebro
https://www.elastic.co/guide/en/elasticsearch/client/curator/current/index.html
https://fluentbit.io
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://www.fluentd.org
https://www.elastic.co/products/logstash/
https://www.elastic.co/products/kibana/

MetalK8s Documentation, Release 0.2.0-dev

• PV : Kubernetes Persistent Volume. This is what will be consumed by a Persistent Volume Claim for the
Kubernetes storage needs

• PVC : Kubernetes Persisten Volume Claim

Goal

MetalK8s provides a functional Kubernetes cluster with some opinionated deployment for the monitoring and logging
aspect. These deployments require storage, but we wanted to provide an easy way for the end user to add it’s own
configuration

As the deployment of Kubernetes on premise is focused on dedicated hardware, Logical Volume Manager (LVM) has
been chosen.

1.3 Changes in MetalK8s

• Release 0.2.0 (in development)

– Breaking changes

• Release 0.1.2 (in development)

– Features added

– Bugs fixed

• Release 0.1.1

– Features added

– Bugs fixed

• Release 0.1.0

– Incompatible changes

– Features added

– Known issues

1.3.1 Release 0.2.0 (in development)

Breaking changes

PR #159 - use upstream chart for Elasticsearch. Historical log data will be lost. Please see the pull-request description
for manual steps required after upgrading a MetalK8s 0.1 cluster to MetalK8s 0.2 (#147)

PR #94 - flatten the storage configuration and allow more user defined storage related actions. Please see Upgrading
from MetalK8s < 0.2.0 (#153)

10 Chapter 1. Getting started

https://github.com/Scality/metal-k8s/pull/159/
https://github.com/Scality/metal-k8s/issues/147/
https://github.com/Scality/metal-k8s/pull/94/
https://github.com/Scality/metal-k8s/issues/153/

MetalK8s Documentation, Release 0.2.0-dev

1.3.2 Release 0.1.2 (in development)

Features added

PR #144 - update Kibana chart version

PR #145 - update the Cerebro chart, and pre-configure the MetalK8s Elasticsearch cluster

PR #154 - rework log collection architecture, now using Fluent Bit to capture logs, then forward to fluentd to aggregate
them and batch-insert in Elasticsearch (#51)

PR #163 - update versions of Elasticsearch Exporter, nginx-ingress, kube-prometheus and Kubespray

Bugs fixed

PR #151 - fix debug clause var scoping

#150 - fix deployment of Elasticsearch, node and Prometheus Grafana dashboards (PR #158)

#139 - stabilize helm init (PR #167)

1.3.3 Release 0.1.1

Note: Compatibility with future releases of MetalK8s is not guaranteed until version 1.0.0 is available. When
deploying a cluster using pre-1.0 versions of this package, you may need to redeploy later.

Features added

PR #11 - run the OpenStack ansible-hardening role on nodes to apply security hardening configurations from the
Security Technical Implementation Guide (STIG) (#88)

PR #127 - deploy Cerebro to manage the Elasticsearch cluster (#126)

PR #138 - update versions of Fluentd, Kibana, Elasticsearch Exporter and Kubespray

PR #140 - set up kube-prometheus to monitor CoreDNS (cfr. PR #104)

Bugs fixed

#103 - set up host anti-affinity for Elasticsearch service scheduling (PR #113)

#120 - required facts not gathered when running the services playbook in isolation (PR #132)

PR #134 - fix bash-completion in the MetalK8s Docker image

1.3.4 Release 0.1.0

This marks the first release of MetalK8s.

Note: Compatibility with future releases of MetalK8s is not guaranteed until version 1.0.0 is available. When
deploying a cluster using pre-1.0 versions of this package, you may need to redeploy later.

1.3. Changes in MetalK8s 11

https://github.com/Scality/metal-k8s/pull/144/
https://github.com/Scality/metal-k8s/pull/145/
https://github.com/Scality/metal-k8s/pull/154/
https://fluentbit.io
https://www.fluentd.org
https://github.com/Scality/metal-k8s/issues/51/
https://github.com/Scality/metal-k8s/pull/163/
https://github.com/Scality/metal-k8s/pull/151/
https://github.com/Scality/metal-k8s/issues/150/
https://github.com/Scality/metal-k8s/pull/158/
https://github.com/Scality/metal-k8s/issues/139/
https://github.com/Scality/metal-k8s/pull/167/
https://github.com/Scality/metal-k8s/pull/11/
https://github.com/openstack/ansible-hardening
http://iase.disa.mil/stigs/Pages/index.aspx
https://github.com/Scality/metal-k8s/issues/88/
https://github.com/Scality/metal-k8s/pull/127/
https://github.com/lmenezes/cerebro
https://github.com/Scality/metal-k8s/issues/126/
https://github.com/Scality/metal-k8s/pull/138/
https://www.fluentd.org
https://www.elastic.co/products/kibana
https://github.com/justwatchcom/elasticsearch_exporter
https://github.com/kubernetes-incubator/kubespray/
https://github.com/Scality/metal-k8s/pull/140/
https://github.com/coreos/prometheus-operator/tree/master/contrib/kube-prometheus
https://coredns.io/
https://github.com/Scality/metal-k8s/pull/104/
https://github.com/Scality/metal-k8s/issues/103/
https://github.com/Scality/metal-k8s/pull/113/
https://github.com/Scality/metal-k8s/issues/120/
https://github.com/Scality/metal-k8s/pull/132/
https://github.com/Scality/metal-k8s/pull/134/
https://github.com/Scality/metal-k8s

MetalK8s Documentation, Release 0.2.0-dev

Incompatible changes

PR #106 - the Ansible playbook which used to be called metal-k8s.yml has been moved to playbooks/
deploy.yml

Features added

PR #100 - disable Elasticsearch deployment by setting metalk8s_elasticsearch_enabled to false (#98)

PR #104 - kube-proxy now uses ipvs instead of iptables to route Service addresses, in preparation for Kubernetes 1.11.
The ipvsadm tool is installed on all k8s-cluster hosts.

PR #104 - use CoreDNS instead of kubedns for in-cluster DNS services, in preparation for Kubernetes 1.11.

PR #113 - deploy the Prometheus node_exporter on k8s-cluster and etcd hosts instead of using a DaemonSet

Known issues

#62 - Elasticsearch Curator may not properly prune old logstash-* indices

12 Chapter 1. Getting started

https://github.com/Scality/metal-k8s/pull/106/
https://github.com/Scality/metal-k8s/pull/100/
https://github.com/Scality/metal-k8s/issues/98/
https://github.com/Scality/metal-k8s/pull/104/
https://github.com/Scality/metal-k8s/pull/104/
https://github.com/Scality/metal-k8s/pull/113/
https://github.com/Scality/metal-k8s/issues/62/

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

13

	Getting started
	Quickstart Guide
	Architecture
	Changes in MetalK8s

	Indices and tables

