MetalK8s Documentation
Release 0.2.0

Scality

Jul 23, 2018

Contents:

1 Getting started

3

1.1 Quickstart Guide e e e e e 3

1.2 Architecture e e e e e e e 7

1.3 Changesin MetalK8s L 9

14 Glossary o ot e e e e e 12

2 Indices and tables 13

MetalK8s Documentation, Release 0.2.0

MetalK8s is an opinionated Kubernetes distribution with a focus on long-term on-prem deployments, launched by
Scality to deploy its Zenko solution in customer datacenters.

It is based on the Kubespray project to reliably install a base Kubernetes cluster, including all dependencies (like etcd),
using the Ansible provisioning tool. This installation is further augmented with operational tools for monitoring and
metering, including Prometheus, Grafana, ElasticSearch and Kibana. Furthermore, an “ingress controller” is deployed
by default, based on Nginx. All of these are managed as Helm packages. See Cluster Services for a whole listing.

Unlike hosted Kubernetes solutions, where network-attached storage is available and managed by the provider, we
assume no such system to be available in environments where MetalK8s is deployed. As such, we focus on managing
node-local storage, and exposing these volumes to containers managed in the cluster. See Storage Architecture for
more information.

Contents: 1

https://github.com/scality/metal-k8s/
https://kubernetes.io
https://www.scality.com
https://www.zenko.io
https://github.com/kubernetes-incubator/kubespray/
https://coreos.com/etcd/
https://www.ansible.com
https://prometheus.io
https://grafana.com
https://www.elastic.co/products/elasticsearch/
https://www.elastic.co/products/kibana/
http://nginx.org
https://www.helm.sh

MetalK8s Documentation, Release 0.2.0

2 Contents:

CHAPTER 1

Getting started

See our Quickstart Guide to deploy a cluster.

1.1 Quickstart Guide

To quickly set up a testing cluster using MetalK8s, you need 3 machines running CentOS 7.4 to which you have SSH
access (these can be VMs). Each machine acting as a Kubernetes node (all of them, in this example) also need to have
at least one disk available to provision storage volumes.

Todo: Give some sizing examples

1.1.1 Defining an Inventory

To tell the Ansible-based deployment system on which machines MetalK8s should be installed, a so-called inventory
needs to be provided. This inventory contains a file listing all the hosts comprising the cluster, as well as some
configuration.

First, create a directory, e.g. inventory/quickstart-cluster, in which the inventory will be stored. For our
setup, we need to create two files. One listing all the hosts, aptly called hosts:

node—-01 ansible_host=10.0.0.1 ansible_user=centos
node—-02 ansible_host=10.0.0.2 ansible_user=centos
node—-03 ansible_host=10.0.0.3 ansible_user=centos

[kube—-master]
node-01
node-02
node-03

[eted]

(continues on next page)

https://github.com/scality/metal-k8s/
https://www.centos.org
https://kubernetes.io
https://www.ansible.com

MetalK8s Documentation, Release 0.2.0

(continued from previous page)

node-01
node-02
node-03

[kube—-node]
node-01
node-02
node-03

[k8s—cluster:children]
kube—-node
kube-master

Make sure to change IP-addresses, usernames etc. according to your infrastructure.

In a second file, called kube-node.yml in a group_vars subdirectory of our inventory, we declare how to setup
storage (in the default configuration) on hosts in the kube-node group, i.e. hosts on which Pods will be scheduled:

metalk8s_lvm_drives_vg_metalk8s: ['/dev/vdb']

In the above, we assume every kube-node host has a disk available as /dev/vdb which can be used to set up Kuber-
netes PersistentVolumes. For more information about storage, see Storage Architecture.

1.1.2 Upgrading from MetalK8s < 0.2.0
MetalK8s 0.2.0 introduced changes to persistent storage provisioning which are not backwards-compatible with Met-
alK8s 0.1. These changes include:
¢ The default LVM VG was renamed from kubevg to vg_metalkSs.
* Only PersistentVolumes required by MetalK8s services are created by default.
* Instead of using dictionaries to configure the storage, these are now flattened.
When a MetalK8s 0.1 configuration is detected, the playbook will report an error.

Given an old configuration looking like this

metal_k8s_lvm:
vgs:
kubevg:
drives: ['/dev/vdb']

the following values must be set in kube—-node . yml to maintain the pre-0.2 behaviour:

* Disable deployment of ‘default’ volumes:

’metalk8s_lvm_default_vg: False

* Register the kubevg VG to be managed:

’metalk8s_lvm_vgs: ["kubevg']

e Use /dev/vdb as a volume for the kubevg VG:

’metalk8s_lvm_drives_kubevg: ['"/dev/vdb']

Note how the VG name is appended to the meralkSs_lvm_drives_ prefix to configure a VG-specific setting.

4 Chapter 1. Getting started

MetalK8s Documentation, Release 0.2.0

* Create and register the default MetalK8s 0.1 LVs and PersistentVolumes:

metalk8s_lvm_lvs_kubevg:

1v01l:

size: 52G
1v02:

size: 52G
1v03:

size: 52G
1v04:

size: 11G
1v05:

size: 11G
1v06:

size: 11G
1v07:

size: 5G
1v08:

size: 5G

1.1.3 Entering the MetalK8s Shell

To easily install a supported version of Ansible and its dependencies, as well as some Kubernetes tools (kubect1 and
helm), we provide a make target which installs these in a local environment. To enter this environment, run make
shell (this takes a couple of seconds on first run):

$ make shell

Creating virtualenv...

Installing Python dependencies...

Downloading kubectl...

Downloading Helm...

Launching MetalK8s shell environment. Run 'exit' to quit.
(metal-k8s) $

Now we’re all set to deploy a cluster:

(metal-k8s) $ ansible-playbook -i inventory/quickstart-cluster -b playbooks/deploy.yml

Grab a coffee and wait for deployment to end.

1.1.4 Inspecting the cluster

Once deployment finished, a file containing credentials to access the cluster is created: inventory/
quickstart-cluster/artifacts/admin.conf. We can export this location in the shell such that the
kubectl and helm tools know how to contact the cluster kube-master nodes, and authenticate properly:

(metal-k8s) $ export KUBECONFIG= pwd /inventory/quickstart-cluster/artifacts/admin.
—conf

Now, assuming port 6443 on the first kube-master node is reachable from your system, we can e.g. list the nodes:

(metal-k8s) $ kubectl get nodes
NAME STATUS ROLES AGE VERSION
node-01 Ready master, node im v1l.9.5+coreos.0

(continues on next page)

1.1. Quickstart Guide 5

MetalK8s Documentation, Release 0.2.0

(continued from previous page)

node-02

v1l.9.5+coreos.0

node-03

Ready
Ready

master, node Im
master, node 1m

v1.9.5+coreos.0

or list all pods:

(metal-k8s) $ kubectl get pods --all-namespaces

NAMESPACE NAME READY .
—STATUS RESTARTS AGE

kube-ingress nginx-ingress-controller-9d8jh 1/1 o
—Running 0 1m

kube-ingress nginx-ingress-controller-divvg 1/1 .
—Running 0 1m

kube-ingress nginx-ingress-controller-m8jpqg 1/1 y
—Running 0 Im

kube-ingress nginx-ingress-default-backend-6664bc64c9-xsws5 1/1 .
—Running 0 Im

kube-ops alertmanager-kube-prometheus-0 2/2 .
—Running 0 2m

kube-ops alertmanager-kube-prometheus-1 2/2 y
—Running 0 2m

kube-ops es-client-7cf£569£5d8-22z974 1/1 .
—Running 0 2m

kube-ops es-client-7cf569f5d8-gg4dh2 1/1 o
—Running 0 2m

kube-ops es—data-cdb5446fff-pkmhn 1/1 y
—Running 0 2m

kube-ops es—data-cdb446fff-zzd2h 1/1 .
—Running 0 2m

kube-ops es—exporter-elasticsearch-exporter-7df5bcf58b-k9fdd 1/1 .
—Running 3 1m

Similarly, we can list all deployed Helm applications:

(metal-k8s) $ helm list

NAME REVISION UPDATED STATUS -
— CHART NAMESPACE

es—exporter 3 Wed Apr 25 23:10:13 2018 DEPLOYED o
— elasticsearch-exporter-0.1.2 kube-ops

fluentd 3 Wed Apr 25 23:09:59 2018 DEPLOYED o
— fluentd-elasticsearch-0.1.4 kube-ops

heapster 3 Wed Apr 25 23:09:37 2018 DEPLOYED o
— heapster-0.2.7 kube-system

kibana 3 Wed Apr 25 23:10:06 2018 DEPLOYED o
— kibana-0.2.2 kube-ops

kube-prometheus 3 Wed Apr 25 23:09:22 2018 DEPLOYED o
— kube-prometheus-0.0.33 kube-ops

nginx-ingress 3 Wed Apr 25 23:09:09 2018 DEPLOYED .
— nginx-ingress-0.11.1 kube-ingress

prometheus—-operator 3 Wed Apr 25 23:09:14 2018 DEPLOYED o

— prometheus—-operator-0.0.15 kube-ops

1.1.5 Cluster Services

Various services to operate and monitor your MetalK8s cluster are provided. To access these, first create a secure
tunnel into your cluster by running kubectl proxy. Then, while the tunnel is up and running, the following tools

6 Chapter 1. Getting started

https://www.helm.sh

MetalK8s Documentation, Release 0.2.0

are available:

Ser- Role Link Notes
vice
Ku- A general purpose, | http://localhost:8001/
ber- web-based UI for | api/vl/namespaces/
netes Kubernetes clusters kube-system/services/https:
dash- kubernetes-dashboard:/proxy/
board
Grafana| Monitoring dash- | http://localhost:8001/
boards for cluster | api/vl/namespaces/
services kube-ops/services/
kube-prometheus-grafana:
http/proxy/
Cere- | An administration | http://localhost:8001/api/ When accessing Cerebro, connect it to http:
bro and monitoring | vl/namespaces/kube-ops/ /lelasticsearch:9200 to operate the MetalK8s
console for Elastic- | services/cerebro:http/proxy/ Elasticsearch cluster.
search clusters
Kibana | A search console for | http://localhost:8001/api/ When accessing Kibana for the first time, set
logs indexed in Elas- | vl/namespaces/kube-ops/ up an index pattern for the logstash—x« in-
ticsearch services/http:kibana:/proxy/ dex, using the @t imestamp field as Time Fil-
ter field name.

See Cluster Services for more information about these services and their configuration.

1.2 Architecture

1.2.1 Cluster Services
A Kubernetes cluster deployed on the Google Cloud Platform using GKE, on Microsoft Azure using AKS or even

using Kops or similar tools on Amazon AWS comes with built-in tooling for centralized container log management,
metrics collection, tracing, node health checking and more.

In MetalK8s, we augment a basic Kubernetes cluster deployed using the Kubespray playbook) with various tools to
bring an on-premise cluster to the same level of operability.

Basic Cluster Addons
On top of the basic Kubernetes services, the following addons are deployed:
Helm / Tiller

Helm is a package manager for Kubernetes. It can be used to deploy various services in a Kubernetes cluster using
templates to describe objects. Tiller is a cluster-side service used by the helm CLI tool to manage these deployments.

Heapster

Heapster is a service which collects and exposes resource consumption metrics of containers running in a cluster.
The Kubernetes Dashboard uses the Heapster service, when available, to display CPU and memory usage of Pods,

1.2. Architecture 7

https://github.com/kubernetes/dashboard
https://github.com/kubernetes/dashboard
https://github.com/kubernetes/dashboard
https://github.com/kubernetes/dashboard
https://github.com/kubernetes/dashboard
http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/
http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/
http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/
http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/
https://grafana.com
http://localhost:8001/api/v1/namespaces/kube-ops/services/kube-prometheus-grafana:http/proxy/
http://localhost:8001/api/v1/namespaces/kube-ops/services/kube-prometheus-grafana:http/proxy/
http://localhost:8001/api/v1/namespaces/kube-ops/services/kube-prometheus-grafana:http/proxy/
http://localhost:8001/api/v1/namespaces/kube-ops/services/kube-prometheus-grafana:http/proxy/
http://localhost:8001/api/v1/namespaces/kube-ops/services/kube-prometheus-grafana:http/proxy/
https://github.com/lmenezes/cerebro
https://github.com/lmenezes/cerebro
http://localhost:8001/api/v1/namespaces/kube-ops/services/cerebro:http/proxy/
http://localhost:8001/api/v1/namespaces/kube-ops/services/cerebro:http/proxy/
http://localhost:8001/api/v1/namespaces/kube-ops/services/cerebro:http/proxy/
http://elasticsearch:9200
http://elasticsearch:9200
https://www.elastic.co/products/kibana/
http://localhost:8001/api/v1/namespaces/kube-ops/services/http:kibana:/proxy/
http://localhost:8001/api/v1/namespaces/kube-ops/services/http:kibana:/proxy/
http://localhost:8001/api/v1/namespaces/kube-ops/services/http:kibana:/proxy/
https://kubernetes.io
https://cloud.google.com
https://cloud.google.com/kubernetes-engine/
https://azure.microsoft.com
https://docs.microsoft.com/en-us/azure/aks/
https://github.com/kubernetes/kops/
https://aws.amazon.com
https://github.com/scality/metal-k8s/
https://github.com/kubernetes-incubator/kubespray/
https://www.helm.sh
https://github.com/kubernetes/heapster

MetalK8s Documentation, Release 0.2.0

Deployments and more.

metrics-server

The metrics-server service is derived from Heapster, and provides an implementation of the Metrics API exposing CPU
and memory consumption of containers. These metrics are in turn used by the HorizontalPodAutoscaler controller.

Ingress Controller
To expose Services to the outside world using an Ingress object, Kubernetes requires an Ingress Controller to be

running in the cluster. For this purpose, MetalK8s deploys the nginx-ingress-controller, which uses the well-known
Nginx HTTP server under the hood.

Metering / Monitoring

Metering and monitoring of a MetalK8s cluster is handled by the Prometheus stack, including the Prometheus TSDB
for metrics storage, Alertmanager to send alerts when preconfigured conditions are (not) met, and Grafana to visualize
stored metrics using predefined dashboards.

prometheus-operator

The CoreOS Prometheus Operator is deployed in the cluster to manage Prometheus instances, scrape targets and
alerting rules.

kube-prometheus

We use kube-prometheus to provide operational insight into the Kubernetes cluster and containers managed by it. This
includes predefined alerting rules and various Grafana dashboards.

kube-prometheus uses prometheus-operator to deploy all required services.

node-exporter

The node-exporter service is deployed to expose various node OS metrics, which are in turn captured by Prometheus.
These metrics include CPU, memory, disk and network consumption as well as many Linux-specific values.

Grafana

To ease cluster operations, several Grafana dashboards are made available, including cluster-wide views and health-
checks, node OS metrics, per-Deployment or per-Pod resource usage, monitoring of the Prometheus service itself, and
many more.

Todo: Do we need to list all exported deployed with kube-prometheus?

8 Chapter 1. Getting started

https://github.com/kubernetes-incubator/metrics-server
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/resource-metrics-api.md
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/#ingress-controllers
https://github.com/kubernetes/ingress-nginx
http://nginx.org
https://prometheus.io
https://prometheus.io/docs/alerting/alertmanager/
https://grafana.com
https://coreos.com
https://coreos.com/operators/prometheus/
https://github.com/coreos/prometheus-operator/tree/master/contrib/kube-prometheus
https://github.com/prometheus/node_exporter

MetalK8s Documentation, Release 0.2.0

Log Collection

ElasticSearch

The ElasticSearch full-text indexing service is used to ingest all container logs in a central place, and make them
accessible to operators. This ElasticSearch cluster is deployed using the Helm chart, with a configuration tuned for
production-grade settings.

Cerebro

The Cerebro dashboard is a monitoring and administration tool for Elasticsearch clusters.

ElasticSearch Curator

To ensure ingested logs don’t flood the ElasticSearch resources, ElasticSearch Curator is deployed with a default
configuration which drops logstash-* indices on a given schedule.

Fluent Bit and fluentd
The Fluent Bit service is deployed as a DaemonSet to stream all container logs into fluentd instances, which collect

them and submit batches to Elasticsearch.

In MetalK8s, Fluent Bit and £1uentd have a role similar to Logstash in the ELK stack.

Kibana

To give operators access to the logs stored in ElasticSearch, a Kibana instance is provided.

Note: When accessing Kibana for the first time, an index pattern for the Logstash-»* indices needs to be configured,
using @t imestamp as Time Filter field name.

1.2.2 Storage Architecture

Storage provisioned by MetalK8s is currently backed by LVM Logical Volumes. A default setup will provision volumes
tailored to the needs of various services deployed with MetalK8s, but this list can be extended to provide volumes
which fulfil the needs of your application workloads.

While we’re improving the documentation of this feature, see Upgrading from MetalK8s < 0.2.0 for some pointers.

1.3 Changes in MetalK8s

e Release 0.2.0

— Breaking changes

1.3. Changes in MetalK8s 9

https://www.elastic.co/products/elasticsearch/
https://github.com/kubernetes/charts/tree/master/incubator/elasticsearch
https://github.com/lmenezes/cerebro
https://www.elastic.co/guide/en/elasticsearch/client/curator/current/index.html
https://fluentbit.io
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://www.fluentd.org
https://www.elastic.co/products/logstash/
https://www.elastic.co/products/kibana/

MetalK8s Documentation, Release 0.2.0

— Features added
— Bugs fixed
— Known issues
* Release 0.1.1
— Features added
— Bugs fixed
* Release 0.1.0
— Incompatible changes

— Features added

— Known issues

1.3.1 Release 0.2.0

Note: Compatibility with future releases of MetalK8s is not guaranteed until version 1.0.0 is available. When
deploying a cluster using pre-1.0 versions of this package, you may need to redeploy later.

Breaking changes
PR #1509 - use upstream chart for Elasticsearch. Historical log data will be lost. Please see the pull-request description
for manual steps required after upgrading a MetalK8s 0.1 cluster to MetalK8s 0.2 (#147)

PR #94 - flatten the storage configuration and allow more user defined storage related actions. Please see Upgrading
from MetalK8s < 0.2.0 (#153)

Features added

PR #144 - update Kibana chart version
PR #145 - update the Cerebro chart, and pre-configure the MetalK8s Elasticsearch cluster

PR #154 - rework log collection architecture, now using Fluent Bit to capture logs, then forward to fluentd to aggregate
them and batch-insert in Elasticsearch (#51)

PR #163 - update versions of Elasticsearch Exporter, nginx-ingress, kube-prometheus and Kubespray
Bugs fixed

PR #151 - fix debug clause var scoping
#150 - fix deployment of Elasticsearch, node and Prometheus Grafana dashboards (PR #158)
#139 - stabilize helm init (PR #167)

Known issues

#179 - some Grafana dashboard charts are not displaying any metrics

10 Chapter 1. Getting started

https://github.com/Scality/metal-k8s/pull/159/
https://github.com/Scality/metal-k8s/issues/147/
https://github.com/Scality/metal-k8s/pull/94/
https://github.com/Scality/metal-k8s/issues/153/
https://github.com/Scality/metal-k8s/pull/144/
https://github.com/Scality/metal-k8s/pull/145/
https://github.com/Scality/metal-k8s/pull/154/
https://fluentbit.io
https://www.fluentd.org
https://github.com/Scality/metal-k8s/issues/51/
https://github.com/Scality/metal-k8s/pull/163/
https://github.com/Scality/metal-k8s/pull/151/
https://github.com/Scality/metal-k8s/issues/150/
https://github.com/Scality/metal-k8s/pull/158/
https://github.com/Scality/metal-k8s/issues/139/
https://github.com/Scality/metal-k8s/pull/167/
https://github.com/Scality/metal-k8s/issues/179/

MetalK8s Documentation, Release 0.2.0

1.3.2 Release 0.1.1

Note: Compatibility with future releases of MetalK8s is not guaranteed until version 1.0.0 is available. When
deploying a cluster using pre-1.0 versions of this package, you may need to redeploy later.

Features added

PR #11 - run the OpenStack ansible-hardening role on nodes to apply security hardening configurations from the
Security Technical Implementation Guide (STIG) (#88)

PR #127 - deploy Cerebro to manage the Elasticsearch cluster (#126)

PR #138 - update versions of Fluentd, Kibana, Elasticsearch Exporter and Kubespray

PR #140 - set up kube-prometheus to monitor CoreDNS (cfr. PR #104)

Bugs fixed

#103 - set up host anti-affinity for Elasticsearch service scheduling (PR #113)
#120 - required facts not gathered when running the services playbook in isolation (PR #132)
PR #134 - fix bash-completion in the MetalK8s Docker image

1.3.3 Release 0.1.0

This marks the first release of MetalK8s.

Note: Compatibility with future releases of MetalK8s is not guaranteed until version 1.0.0 is available. When
deploying a cluster using pre-1.0 versions of this package, you may need to redeploy later.

Incompatible changes

PR #106 - the Ansible playbook which used to be called metal-k8s.yml has been moved to playbooks/
deploy.yml

Features added

PR #100 - disable Elasticsearch deployment by setting metalk8s_elasticsearch_enabled to false (#98)

PR #104 - kube-proxy now uses ipvs instead of iptables to route Service addresses, in preparation for Kubernetes 1.11.
The ipvsadm tool is installed on all k8s-cluster hosts.

PR #104 - use CoreDNS instead of kubedns for in-cluster DNS services, in preparation for Kubernetes 1.11.
PR #113 - deploy the Prometheus node_exporter on k8s-cluster and etcd hosts instead of using a DaemonSet

Known issues

#62 - Elasticsearch Curator may not properly prune old logstash-* indices

1.3. Changes in MetalK8s 11

https://github.com/Scality/metal-k8s/pull/11/
https://github.com/openstack/ansible-hardening
http://iase.disa.mil/stigs/Pages/index.aspx
https://github.com/Scality/metal-k8s/issues/88/
https://github.com/Scality/metal-k8s/pull/127/
https://github.com/lmenezes/cerebro
https://github.com/Scality/metal-k8s/issues/126/
https://github.com/Scality/metal-k8s/pull/138/
https://www.fluentd.org
https://www.elastic.co/products/kibana
https://github.com/justwatchcom/elasticsearch_exporter
https://github.com/kubernetes-incubator/kubespray/
https://github.com/Scality/metal-k8s/pull/140/
https://github.com/coreos/prometheus-operator/tree/master/contrib/kube-prometheus
https://coredns.io/
https://github.com/Scality/metal-k8s/pull/104/
https://github.com/Scality/metal-k8s/issues/103/
https://github.com/Scality/metal-k8s/pull/113/
https://github.com/Scality/metal-k8s/issues/120/
https://github.com/Scality/metal-k8s/pull/132/
https://github.com/Scality/metal-k8s/pull/134/
https://github.com/Scality/metal-k8s
https://github.com/Scality/metal-k8s/pull/106/
https://github.com/Scality/metal-k8s/pull/100/
https://github.com/Scality/metal-k8s/issues/98/
https://github.com/Scality/metal-k8s/pull/104/
https://github.com/Scality/metal-k8s/pull/104/
https://github.com/Scality/metal-k8s/pull/113/
https://github.com/Scality/metal-k8s/issues/62/

MetalK8s Documentation, Release 0.2.0

1.4 Glossary

LVM Physical Volume

LVM PV An volume (disk or partition) consumed by a Volume Group to provide storage to Logical Volumes.
LVM Volume Group

LVM VG A logical unit which aggregates Physical Volumes to provision Logical Volumes

LVM Logical Volume

LVM LV A volume, part of a Volume Group, which exposes a slice of its backing storage.

Kubernetes PersistentVolume

Kubernetes PV An existing persistent storage volume available to Kubernetes workloads.

Kubernetes PersistentVolumeClaim

Kubernetes PVC A claim on a PersistentVolume, consumed by one or more Pods.

12 Chapter 1. Getting started

CHAPTER 2

Indices and tables

* genindex
* modindex

e search

13

MetalK8s Documentation, Release 0.2.0

14 Chapter 2. Indices and tables

Index

K

Kubernetes PersistentVolume, 12
Kubernetes PersistentVolumeClaim, 12
Kubernetes PV, 12

Kubernetes PVC, 12

L

LVM Logical Volume, 12
LVM LYV, 12

LVM Physical Volume, 12
LVM PV, 12

LVM VG, 12

LVM Volume Group, 12

15

	Getting started
	Quickstart Guide
	Architecture
	Changes in MetalK8s
	Glossary

	Indices and tables

