MetalK8s

Scality

Apr 11, 2022

CONTENTS:

Installation 3
1.1 Introduction L e e 3
1.2 PrerequiSites e 9
1.3 Deployment of the Bootstrapnode L e 12
1.4 Enable IP-in-IP Encapsulation e e e 17
1.5 Cluster expansion v v i v i i e e e e e e e e e e e e e e e e 17
1.6 Post-Installation Procedure 24
1.7 Accessing Cluster SErvices i e e 29
1.8 Advanced guide e e 31
1.9 Troubleshooting e e e e e e e e e 31
Operation 35
2.1 Cluster MONitoring o o o o e e e e e e e e 35
2.2 Account Administration L. Lo e e e e 39
2.3 Cluster and Services Configurations 0 v i i v i e e 44
24 Volume Management e e e e e e 63
2.5 ClusterUpgrade e e 69
2.6 Cluster Downgrade o e e e e e e e 70
2.7 Disaster Recovery L e e e e 71
2.8 Solution Deployment L e e e e e e e e e 73
2.9 Changing the hostname of a MetalK8snode, 74
2.10 Changing the Control Plane Ingress IP L o oL, 76
2.11 Using the metalk8s-utilsImage i 77
2.12 Registry HA . . . o o L e e 78
2.13 Listening Processes e e e e e e e e e e e e e e 79
2.14 Troubleshooting L e e e e e e e e 80
2,15 SOSTEPOTL . . o v v v o e e e e e e e e e e e e e e e e 83
Developer Guide 85
3.1 Architecture Documents L e e e e e 85
32 Howtobuild MetalK8s 179
33 Howtoruncomponentslocally 183
34 Deploy new MetalK8simage i 186
3.5 Development e e e e e e e e e e e e e e e e e 187
3.6 Integrating with MetalK8s e e e 222
3.7 Shared Tooling o o e e e e e e e e 233
Glossary 241
Indices and tables 245

Python Module Index 247

Index 249

MetalK8s

MetalK8s is an opinionated Kubernetes distribution with a focus on long-term on-prem deployments, launched by
Scality to deploy its Zenko solution in customer datacenters.

See the Installation to begin installing a MetalK8s cluster.

CONTENTS: 1

https://github.com/scality/metalk8s/
https://kubernetes.io/
https://www.scality.com/
https://www.zenko.io/
https://github.com/scality/metalk8s/

MetalK8s

2 CONTENTS:

CHAPTER
ONE

INSTALLATION

This guide describes how to set up a MetalK8s cluster. It offers general requirements and describes sizing, configuration,
and deployment. It also explains major concepts central to MetalK8s architecture, and shows how to access various
services after completing the setup.

1.1 Introduction

1.1.1 Foreword
MetalKS8s is a Kubernetes distribution with a number of add-ons selected for on-premises deployments, including pre-
configured monitoring and alerting, self-healing system configuration, and more.
Installing a MetalK8s cluster can be broken down into the following steps:
1. Setup of the environment
2. Deployment of the Bootstrap node, the first machine in the cluster
3. Expansion of the cluster, orchestrated from the Bootstrap node

4. Post installation configuration steps and sanity checks

Warning: MetalK8s is not designed to handle world-distributed multi-site architectures. Instead, it provides a
highly resilient cluster at the datacenter scale. To manage multiple sites, look into application-level solutions or
alternatives from such Kubernetes community groups as the Multicluster SIG).

1.1.2 Choosing a Deployment Architecture

Before starting the installation, it’s best to choose an architecture.

https://github.com/scality/metalk8s/
https://kubernetes.io/
https://github.com/kubernetes/community/tree/master/sig-multicluster

MetalK8s

Standard Architecture
The recommended architecture when installing a small MetalK8s cluster emphasizes ease of installation, while pro-
viding high stability for scheduled workloads. This architecture includes:

* One machine running Bootstrap and control plane services

* Two other machines running control plane and infra services

* Three more machines for workload applications

bootstrap .
[master + etcd l master + etcd] l master + etcd]
l infra QJ l infra BJ
; - > !
workloads workloads || workloads

Machines dedicated to the control plane do not require many resources (see the sizing notes below), and can safely run
as virtual machines. Running workloads on dedicated machines makes them simpler to size, as MetalK8s impact will
be negligible.

Note: “Machines” may indicate bare-metal servers or VMs interchangeably.

Extended Architecture
This example architecture focuses on reliability rather than compactness, offering the finest control over the entire
platform:

* One machine dedicated to running Bootstrap services (see the Bootstrap role definition below)

¢ Three extra machines (or five if installing a really large cluster, e.g. > 100 nodes) for running the Kubernetes
control plane (with core K8s services and the backing etcd DB)

* One or more machines dedicated to running infra services (see the infra role)

* Any number of machines dedicated to running applications, the number and sizing depending on the application
(for instance, Zenko recommends three or more machines)

4 Chapter 1. Installation

https://kubernetes.io/
https://zenko.io/

MetalK8s

-

~

[master + etC&J

[master + etc&J

[master + etC&J

' By d Ry d aY ' 3
. workloads ||\ workloads ||\ workloads ||\ workloads :[[i workloads
- -) LI IJ kel) LI LI IJ

Compact Architectures

Although its design is not focused on having the smallest compute and memory footprints, MetalK8s can provide a
fully functional single-node “cluster”. The bootstrap node can be configured to also allow running applications next to
all other required services (see the section about taints below).

Because a single-node cluster has no resilience to machine or site failure, a three-machine cluster is the most compact
recommended production architecture. This architecture includes:

* Two machines running control plane services alongside infra and workload applications

* One machine running bootstrap services and all other services

' N a¥s 3

bootstrap

[master + etcd] [
|

master + etcd]

infra]

workloads !

U)

master + etcd] [
|

Note: Sizing for such compact clusters must account for the expected load. The exact impact of colocating an appli-
cation with MetalK8s services must be evaluated by that application’s provider.

1.1. Introduction 5

MetalK8s

Variations
You can customize your architecture using combinations of roles and taints, described below, to adapt to the available
infrastructure.

Generally, it is easier to monitor and operate well-isolated groups of machines in the cluster, where hardware issues
only impact one group of services.

You can also evolve an architecture after initial deployment, if the underlying infrastructure also evolves (new machines
can be added through the expansion mechanism, roles can be added or removed, etc.).

1.1.3 Concepts

Although familiarity with Kubernetes concepts is recommended, the necessary concepts to grasp before installing a
MetalKS8s cluster are presented here.

Nodes

Nodes are Kubernetes worker machines that allow running containers and can be managed by the cluster (see control
plane services, next section).

Control and Workload Planes
The distinction between the control and workload planes is central to MetalK8s, and often referred to in other Kuber-
netes concepts.

The control plane is the set of machines (called “nodes”) and the services running there that make up the essential
Kubernetes functionality for running containerized applications, managing declarative objects, and providing authen-
tication/authorization to end users as well as services. The main components of a Kubernetes control plane are:

* API Server
* Scheduler
» Controller Manager

The workload plane is the set of nodes in which applications are deployed via Kubernetes objects, managed by services
in the control plane.

Note: Nodes may belong to both planes, so that one can run applications alongside the control plane services.

Control plane nodes often are responsible for providing storage for API Server, by running efcd. This responsibility
may be offloaded to other nodes from the workload plane (without the etcd taint).

6 Chapter 1. Installation

https://kubernetes.io/docs/concepts/

MetalK8s

Node Roles

A node’s responsibilities are determined using roles. Roles are stored in Node manifests using labels of the form
node-role.kubernetes.io/<role-name>: ''.

MetalKS8s uses five different roles, which may be combined freely:

node-role.kubernetes.io/master The master role marks a control plane member. Control plane services can
only be scheduled on master nodes.

node-role.kubernetes.io/etcd The etcd role marks a node running etcd for API Server storage.

node-role.kubernetes.io/infra The infrarole is specific to MetalK8s. It marks nodes where non-critical cluster
services (monitoring stack, Uls, etc.) are running.

node-role.kubernetes.io/bootstrap This marks the Bootstrap node. This node is unique in the cluster, and is
solely responsible for the following services:

* An RPM package repository used by cluster members
* An OClI registry for Pod images
* A Salt Master and its associated SaltAPI
In practice, this role is used in conjunction with the master and etcd roles for bootstrapping the control plane.

In the architecture diagrams presented above, each box represents a role (with the node-role.kubernetes.io/
prefix omitted).

Node Taints

Taints are complementary to roles. When a taint or a set of taints is applied to a Node, only Pods with the corresponding
tolerations can be scheduled on that Node.

Taints allow dedicating Nodes to specific use cases, such as running control plane services.

Refer to the architecture diagrams above for examples: each T marker on a role means the taint corresponding to this
role has been applied on the Node.

Note that Pods from the control plane services (corresponding to master and etcd roles) have tolerations for the bootstrap
and infra taints. This is because after bootstrapping the first Node, it will be configured as follows:

bootstrap .

master + etcd

infra

|

The taints applied are only tolerated by services deployed by MetalKS8s. If the selected architecture requires workloads
to run on the Bootstrap node, these taints must be removed.

1.1. Introduction 7

MetalK8s

bootstrap .

oo
infra infra

To do this, use the following commands after deployment:

root@ootstrap $ kubectl taint nodes <bootstrap-node-name> \
node-role.kubernetes.io/bootstrap:NoSchedule-

root@ootstrap $§ kubectl taint nodes <bootstrap-node-name> \
node-role.kubernetes.io/infra:NoSchedule-

Note: To get more in-depth information about taints and tolerations, see the official Kubernetes documentation.

Networks

A MetalKS8s cluster requires a physical network for both the control plane and the workload plane Nodes. Although
these may be the same network, the distinction will still be made in further references to these networks, and when
referring to a Node IP address. Each Node in the cluster must belong to these two networks.

The control plane network enables cluster services to communicate with each other. The workload plane network
exposes applications, including those in infra Nodes, to the outside world.

MetalKS8s also enables configuring virtual networks for internal communication:
* A network for Pods, defaulting to 10.233.0.0/16
* A network for Services, defaulting to 10.96.0.0/12

In case of conflicts with existing infrastructure, choose other ranges during Bootstrap configuration.

1.1.4 Additional Notes
Sizing

Sizing the machines in a MetalK8s cluster depends on the selected architecture and anticipated changes. Refer to the
documentation of the applications planned to run in the deployed cluster before completing the sizing, as their needs
will compete with the cluster’s.

Each role, describing a group of services, requires a certain amount of resources to run properly. If multiple roles are
used on a single Node, these requirements add up.

8 Chapter 1. Installation

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

MetalK8s

Role Services CPU| RAM Required Storage Recom-
mended
Storage
bootstrap Package repositories, con- | 1 2 Sufficient space for the product
tainer registries, Salt mas- | core | GB | ISO archives
ter
etcd etcd database for the K8s | 0.5 | 1 1 GB for /var/lib/etcd
API core | GB
master K8s API, scheduler, and | 0.5 1
controllers core | GB
infra Monitoring services, | 0.5 | 2 10 GB partition for Prometheus 1
Ingress controllers core | GB | GB partition for Alertmanager
requirements Salt minion, Kubelet 0.2 | 0.5 | 40 GB root partition 100 GB or
common to any core | GB more for /var
Node

These numbers do not account for highly unstable workloads or other sources of unpredictable load on the cluster
services. Providing a safety margin of an additional 50% of resources is recommended.

Consider the official recommendations for etcd sizing, as the stability of a MetalK8s installation depends on the stability
of the backing etcd (see the efcd section for more details). Prometheus and Alertmanager also require storage, as
explained in Provision Storage for Services.

Deploying with Cloud Providers

When installing in a virtual environment, such as AWS EC2 or OpenStack, adjust network configurations carefully:
virtual environments often add a layer of security at the port level, which must be disabled or circumvented with /P-in-1P
encapsulation.

Also note that Kubernetes has numerous integrations with existing cloud providers to provide easier access to propri-
etary features, such as load balancers. For more information, review this topic.

1.2 Prerequisites

MetalK8s clusters require machines running CentOS/RHEL 7.6 or higher as their operating system. These machines
may be virtual or physical, with no difference in setup procedure. The number of machines to set up depends on the
architecture you chose in Choosing a Deployment Architecture.

Machines must not be managed by any configuration management system, such as SaltStack or Puppet.

Warning: The distribution must be left intact as much as possible (do not tune, tweak, or configure
it, or install any software).

1.2. Prerequisites 9

https://github.com/etcd-io/etcd/blob/master/Documentation/op-guide/hardware.md
https://aws.amazon.com/ec2/
https://www.openstack.org/
https://kubernetes.io/docs/concepts/cluster-administration/cloud-providers/
https://github.com/scality/metalk8s
https://www.centos.org
https://access.redhat.com/products/red-hat-enterprise-linux
https://www.saltstack.com
https://puppet.com

MetalK8s

1.2.1 Proxies

For nodes operating behind a proxy, see Configuration.

1.2.2 Linux Kernel Version

Linux kernels shipped with CentOS/RHEL 7 and earlier are affected by a cgroups memory leak bug.
This bug was fixed in kernel 3.10.0-1062.4.1. Use this kernel version or later.

The version can be retrieved using:

$ uname -r

If the installed version is lower than the one above, upgrade it with:

$ yum upgrade -y kernel-3.10.0-1062.4.1.el7
$ reboot

These commands may require sudo or root access.

1.2.3 Provisioning

SSH

Each machine must be accessible through SSH from the host. Bootstrap node deployment generates anew SSH identity
for the Bootstrap node and shares it with other nodes in the cluster. You can also do this manually beforehand.

Network
Each machine must be a member of both the control plane and workload plane networks described in Networks. How-
ever, these networks can overlap, and nodes do not need distinct IP addresses for each plane.

For the host to reach the cluster-provided Uls, it must be able to connect to the machines’ control plane IP addresses.

Repositories
Each machine must have properly configured repositories with access to basic repository packages (depending on the
operating system).
CentOS:
* base
* extras
* updates
RHEL 7:
e rhel-7-server-rpms
¢ rhel-7-server-extras-rpms
* rhel-7-server-optional-rpms

RHEL 8:

10 Chapter 1. Installation

MetalK8s

* rhel-8-for-x86_64-baseos-rpms
¢ rhel-8-for-x86_64-appstream-rpms

Note: RHEL instances must be registered.

Note: Repository names and configurations do not need to be the same as the official ones, but all packages must be
made available.

To enable an existing repository:

CentOS:

yum-config-manager --enable <repo_name>

RHEL.:

subscription-manager repos --enable=<repo_name>

To add a new repository:

yum-config-manager --add-repo <repo_url>

Note: repo_url can be set to a remote URL using the prefix http.//, https.//, ftp://, etc., or to a local path
using file://.

For more, review the official Red Hat documentation:
* Enable Optional repositories with RHSM
* Configure repositories with YUM

* Advanced repositories configuration

etcd

For production environments, a block device dedicated to efcd is recommended for better performance and stability.
With lower write latency and less variance than spinning disks, SSDs are recommended to improve reliability.

The device must be formatted and mounted on /var/lib/etcd, on Nodes intended to bear the ercd role.

For more on etcd’s hardware requirements, see the official documentation.

1.2. Prerequisites 11

https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/392003
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sec-configuring_yum_and_yum_repositories#sec-Managing_Yum_Repositories
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sec-configuring_yum_and_yum_repositories#sec-Setting_repository_Options
https://etcd.io/docs/v3.3.12/op-guide/hardware

MetalK8s

1.3 Deployment of the Bootstrap node

1.3.1 Preparation
1. Retrieve a MetalK8s ISO (you may build one yourself by following our developer guide). Scality customers can
retrieve validated builds as part of their license from the Scality repositories.

2. Download the MetalK8s ISO file on the machine that will host the bootstrap node. Run checkisomd5 —verbose
<path-to-iso> to validate its integrity (checkisomd5 is part of the isomd5sum package).

3. Mount this ISO file at the path of your choice (we will use /srv/scality/metalk8s-|version| for the rest
of this guide, as this is where the ISO will be mounted automatically after running the bootstrap script):

root@ootstrap $ mkdir -p /srv/scality/metalk8s-2.11.6
root@ootstrap $ mount <path-to-iso> /srv/scality/metalk8s-2.11.6

1.3.2 Configuration

1. Create the MetalK8s configuration directory.

root@bootstrap $ mkdir /etc/metalk8s

2. Create the /etc/metalk8s/bootstrap.yaml file. This file contains initial configuration settings which are
mandatory for setting up a MetalK8s Bootstrap node. Change the networks, IP address, and hostname fields to
conform to your infrastructure.

apiVersion: metalk8s.scality.com/vlalpha3
kind: BootstrapConfiguration
networks:
controlPlane:
cidr: <CIDR-notation>
ingress:
ip: <IP-for-ingress>
controller:
replicas: 2
affinity:
podAntiAffinity:
hard: []
soft:
- topologyKey: kubernetes.io/hostname
metallB:
enabled: <boolean>
workloadPlane:
cidr: <CIDR-notation>
mtu: <network-MTU>
pods: <CIDR-notation>
services: <CIDR-notation>
proxies:
http: <http://proxy-ip:proxy-port>
https: <https://proxy-ip:proxy-port>
NO_proxy:
- <host>
- <ip/cidr>

(continues on next page)

12 Chapter 1. Installation

mailto:root@bootstrap
mailto:root@bootstrap

MetalK8s

(continued from previous page)

ca:
minion: <hostname-of-the-bootstrap-node>
archives:
- <path-to-metalk8s-iso>
kubernetes:
apiServer:
featureGates:
<feature_gate_name>: True
controllerManager:
config:
terminatedPodGCThreshold: 500
coreDNS:
replicas: 2
affinity:
podAntiAffinity:
hard: []
soft:
- topologyKey: kubernetes.io/hostname

The networks field specifies a range of IP addresses written in CIDR notation for it’s various subfields.

The controlPlane and workloadPlane entries are mandatory. These values specify the range of IP
addresses that will be used at the host level for each member of the cluster.

Note: Several CIDRs can be provided if all nodes do not sit in the same network. This is an advanced
configuration which we do not recommend for non-experts.

For controlPlane entry, an ingress can also be provided. This section allow to set the IP that will be
used to connect to all the control plane components, like MetalK8s-UI and the whole monitoring stack.
We suggest using a Virtual IP that will sit on a working master Node. The default value for this Ingress
IP is the control plane IP of the Bootstrap node (which means that if you lose the Bootstrap node, you no
longer have access to any control plane component).

If you want to override the default controlPlane ingress controller podAntiAffinity or number of
replicas, by default MetalK8s deploy 2 replicas and use soft podAntiAffinity on hostname so that if it’s
possible those controllers pods will be spread on different master nodes.

Note: Affinity and number of replicas for control plane ingress controller will be ignored if MetalLB is
disabled, as this control plane ingress controller will be deployed as a DaemonSet, which means that a pod
will run on every master nodes by default.

This ip for ingress can be managed by MetalK8s directly if it’s possible in your environment, to do so
we use MetalLLB that allow to manage this Virtual IP directly on Layer2 using only ARP requests, in order
to be able to use MetalLLB your network need to properly broadcast ARP requests so that Control Plane
node hosting the Virtual IP can answer to this ARP request. When MetalLLB is enabled this ingress IP is
mandatory.

For workloadPlane entry an MTU can also be provided, this MTU value should be the lowest MTU
value accross all the workload plane network. The default value for this MTU is 1460.

networks:
controlPlane:

(continues on next page)

1.3. Deployment of the Bootstrap node 13

https://en.wikipedia.org/wiki/Virtual_IP_address
https://metallb.universe.tf/
https://en.wikipedia.org/wiki/Address_Resolution_Protocol
https://en.wikipedia.org/wiki/Maximum_transmission_unit

MetalK8s

(continued from previous page)

cidr: 10.200.1.0/28
workloadPlane:

cidr: 10.200.1.0/28

mtu: 1500

All nodes within the cluster must connect to both the control plane and workload plane networks. If
the same network range is chosen for both the control plane and workload plane networks then the same
interface may be used.

The pods and services fields are not mandatory, though can be changed to match the constraints of
existing networking infrastructure (for example, if all or part of these default subnets is already routed).
During installation, by default pods and services are set to the following values below if omitted.

For production clusters, we advise users to anticipate future expansions and use sufficiently large net-
works for pods and services.

networks:
pods: 10.233.0.0/16
services: 10.96.0.0/12

The proxies field can be omitted if there is no proxy to configure. The 2 entries http and https are used to configure
the containerd daemon proxy to fetch extra container images from outstide the MetalK8s cluster. The no_proxy entry
specifies IPs that should be excluded from proxying, it must be a list of hosts, IP addresses or IP ranges in CIDR format.
For example;

NoO_proxy:
- localhost
- 127.0.0.1
- 10.10.0.0/16
- 192.168.0.0/16

The archives field is a list of absolute paths to MetalK8s ISO files. When the bootstrap script is executed, those ISOs
are automatically mounted and the system is configured to re-mount them automatically after a reboot.

The kubernetes field can be omitted if you do not have any specific Kubernetes Feature Gates to enable or disable
and if you are ok with defaults kubernetes configuration.

If you need to enable or disable specific features for kube-apiserver configure the corresponding entries
in the kubernetes.apiServer. featureGates mapping.

If you want to override the default coreDNS podAntiAffinity or number of replicas, by default MetalK8s
deploy 2 replicas and use soft podAntiAffinity on hostname so that if it’s possible coreDNS pods will be
spread on different infra nodes. If you have more infra node than coreDNS replicas, you should set hard
podAntiAffinity on hostname so that you are sure that coreDNS pods sit on different node, to do so:

kubernetes:
coreDNS:
affinity:
podAntiAffinity:
hard:
- topologyKey: kubernetes.io/hostname

From controllerManager section you can override the number of terminated pods that can exist before
the terminated pod garbage collector starts deleting them. If it’s set to 0, the terminated pod garbage
collector is disabled (default to 500)

14 Chapter 1. Installation

https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/

MetalK8s

1.3.3 SSH Provisioning

1. Prepare the MetalK8s PKI directory.

root@bootstrap $ mkdir -p /etc/metalk8s/pki

2. Generate a passwordless SSH key that will be used for authentication to future new nodes.

root@bootstrap $ ssh-keygen -t rsa -b 4096 -N '' -f /etc/metalk8s/pki/salt-bootstrap

Warning: Although the key name is not critical (will be re-used afterwards, so make sure to replace oc-
curences of salt-bootstrap where relevant), this key must exist in the /etc/metalk8s/pki directory.

3. Accept the new identity on future new nodes (run from your host).

1. Retrieve the public key from the Bootstrap node.

user@host $ scp root@bootstrap:/etc/metalk8s/pki/salt-bootstrap.pub /tmp/salt-
—bootstrap.pub

2. Authorize this public key on each new node (this command assumes a functional SSH access from your
host to the target node). Repeat until all nodes accept SSH connections from the Bootstrap node.

user@host $ ssh-copy-id -i /tmp/salt-bootstrap.pub root@<node_hostname>

1.3.4 Installation

Run the Installation

Run the bootstrap script to install binaries and services required on the Bootstrap node.

root@bootstrap $ /srv/scality/metalk8s-2.11.6/bootstrap.sh

Warning: For virtual networks (or any network which enforces source and destination fields of IP packets to
correspond to the MAC address(es)), [P-in-IP needs to be enabled.

Validate the install

* Check that all Pods on the Bootstrap node are in the Running state. Note that Prometheus and Alertmanager
pods will remain in a Pending state until their respective persistent storage volumes are provisioned.

Note: The administrator Kubeconfig file is used to configure access to Kubernetes when used with kubectl as shown
below. This file contains sensitive information and should be kept securely.

On all subsequent kubectl commands, you may omit the --kubeconfig argument if you have exported the
KUBECONFIG environment variable set to the path of the administrator Kubeconfig file for the cluster.

By default, this path is /etc/kubernetes/admin. conf.

root@ootstrap $ export KUBECONFIG=/etc/kubernetes/admin.conf

1.3. Deployment of the Bootstrap node 15

mailto:root@bootstrap

MetalK8s

root@ootstrap $ kubectl get nodes --kubeconfig /etc/kubernetes/admin.conf

NAME
bootstrap

STATUS
Ready

ROLES

bootstrap,etcd,infra,master

AGE

17m

VERSION
v1.15.5

root@ootstrap $ kubectl get pods --all-namespaces -o wide --kubeconfig /etc/kubernetes/

—admin.conf
NAMESPACE

—STATUS RESTARTS
—READINESS GATES
kube-system
—Running 0
kube-system
—Running 0
kube-system
—Running 0
kube-system
—Running 0
kube-system
—Running 0
kube-system
—Running 0
kube-system
—Running 0
kube-system
—Running 0
kube-system
—Running 0
kube-system
—Running 0
kube-system
—Running 0
kube-system
—Running 0
metalk8s-ingress
—Running 0
metalk8s-ingress
—Running 0
metalk8s-ingress
—Running 0
metalk8s-logging
—Pending 0
metalk8s-monitoring
—Pending 0
metalk8s-monitoring
—Running 0
metalk8s-monitoring
—Running 0
metalk8s-monitoring
—Running 0
metalk8s-monitoring
—Running 0

NAME
AGE IP

NODE

READY .

NOMINATED NODE .

calico-kube-controllers-7c9944c5£f4-h9bsc

6m29s 10.233.220.129 bootstrap <none>
calico-node-v4ghb

6m29s 10.200.3.152 bootstrap <none>
coredns-££f46db798-k54z9

6m29s 10.233.220.134 bootstrap <none>
coredns-£f£f46db798-nvmjl

6m29s 10.233.220.132 bootstrap <none>
etcd-bootstrap

S5m45s 10.200.3.152 bootstrap <none>
kube-apiserver-bootstrap

5m57s 10.200.3.152 bootstrap <none>
kube-controller-manager-bootstrap

7més 10.200.3.152 bootstrap <none>
kube-proxy-n6zgk

6m32s 10.200.3.152 bootstrap <none>
kube-scheduler-bootstrap

7més 10.200.3.152 bootstrap <none>
repositories-bootstrap

6m20s 10.200.3.152 bootstrap <none>
salt-master-bootstrap

6m10s 10.200.3.152 bootstrap <none>
storage-operator-7567748b6d-hp7gq

6m6s 10.233.220.138 bootstrap <none>
nginx-ingress-control-plane-controller-5nkkx

6mo6s 10.233.220.137 bootstrap <none>
nginx-ingress-controller-shg7x

6m7s 10.233.220.135 bootstrap <none>
nginx-ingress-default-backend-7d8898655c-jj716

6m7s 10.233.220.136 bootstrap <none>
loki-®

6m21s <none> <none> <none>

alertmanager-prometheus-operator-alertmanager-0

6mls <none>

<none>

<none>

prometheus-operator-grafana-775fbb5b-sgngh

6ml7s 10.233.220.130

prometheus-operator-kube-state-metrics-7587b4897c-tt79q

6ml7s 10.233.220.131

prometheus-operator-operator-7446d89644-zqdlj

6ml7s 10.233.220.133

prometheus-operator-prometheus-node-exporter-rb969

6ml7s 10.200.3.152

bootstrap
bootstrap
bootstrap

bootstrap

<none>

<none>

<none>

<none>

1/1 o
<none>

1/1 o
<none>

1/1 o
<none>

1/1 o
<none>

1/1 o
<none>

1/1 o
<none>

1/1 o
<none>

1/1 o
<none>

1/1 o
<none>

1/1 o
<none>

2/2 o
<none>

1/1 o
<none>

1/1 o
<none>

1/1 o
<none>

1/1 o
<none>

0/1 o
<none>

0/2 o
<none>

2/2 o
<none>

1/1 o
<none>

1/1 o
<none>

1/1 o
<none>

(continues on next page)

16

Chapter 1. Installation

MetalK8s

(continued from previous page)

metalk8s-monitoring prometheus-prometheus-operator-prometheus-0 0/3 o
—Pending 0 5m50s <none> <none> <none> <none>
metalk8s-ui metalk8s-ui-6f74ff4bc-£fgk86 1/1 o
—Running 0 6m4ds 10.233.220.139 bootstrap <none> <none>

* From the console output above, Prometheus, Alertmanager and Loki pods are in a Pending state because their
respective persistent storage volumes need to be provisioned. To provision these persistent storage volumes,
follow this procedure.

* Check that you can access the MetalK8s GUI after the installation is completed by following this procedure.

* At this stage, the MetalK8s GUI should be up and ready for you to explore.

Note: Monitoring through the MetalK8s GUI will not be available until persistent storage volumes for both
Prometheus and Alertmanager have been successfully provisioned.

* If you encounter an error during installation or have issues validating a fresh MetalK8s installation, refer to the
Troubleshooting section.

1.4 Enable IP-in-IP Encapsulation

By default, Calico in MetalK8s is configured to use IP-in-IP encapsulation only for cross-subnet communication.

IP-in-IP is needed for any network which enforces source and destination fields of IP packets to correspond to the MAC
address(es).

To configure IP-in-IP encapsulation for all communications, run the following command:

$ kubectl --kubeconfig /etc/kubernetes/admin.conf \
patch ippool default-ipv4-ippool --type=merge \
--patch '{"spec": {"ipiplMode": "Always"}}'

For more information refer to IP-in-IP Calico configuration.

1.5 Cluster expansion

Once the Bootstrap node has been installed (see Deployment of the Bootstrap node), the cluster can be expanded. Unlike
the kubeadm join approach which relies on bootstrap tokens and manual operations on each node, MetalK8s uses
Salt SSH to setup new Nodes through declarative configuration, from a single entrypoint. This operation can be done
either through the MetalK8s GUI or the command-line.

1.4. Enable IP-in-IP Encapsulation 17

https://docs.projectcalico.org/
https://en.wikipedia.org/wiki/IP_in_IP
https://en.wikipedia.org/wiki/IP_in_IP
https://en.wikipedia.org/wiki/IP_in_IP
https://docs.projectcalico.org/v3.7/networking/vxlan-ipip
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm-join/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping/

MetalK8s

1.5.1 Defining an Architecture

Follow the recommendations provided in the introduction to choose an architecture.

List the machines to deploy and their associated roles, and deploy each of them using the following process, either from
the GUI or CLI. Note however, that the finest control over roles and raints can only be achieved using the command-line.

1.5.2 Adding a Node with the MetalK8s GUI

To reach the UI, refer to this procedure.

Creating a Node Object

The first step to adding a Node to a cluster is to declare it in the API. The MetalK8s GUI provides a simple form for

that purpose.

1. Navigate to the Node list page, by clicking the button in the sidebar:

¢ SCALITY METALKS8S PLATFORM

Cluster Status : Everything is up and running

— Alerts
Name = Severity ~
CPUThrottlingHigh
CPUThrottlingHigh
DeadMansSwitch @
KubeControllerManagerDown ®

Messag
74% thrc
27% thre
Thisis a

KubeCol

2. From the Node list (the Bootstrap node should be visible there), click the button labeled “Create a New Node™:

18 Chapter 1. Installation

MetalK8s

3 SCALITY METALKS8S PLATFORM

<4 Create a New Node

Name = Status =

bootstrap Ready

3. Fill the form with relevant information (make sure the SSH provisioning for the Bootstrap node is done first):
e Name: the hostname of the new Node
¢ SSH User: the user for which the Bootstrap has SSH access
* Hostname or IP: the address to use for SSH from the Bootstrap
* SSH Port: the port to use for SSH from the Bootstrap
* SSH Key Path: the path to the private key generated in this procedure
¢ Sudo required: whether the SSH deployment will need sudo access
* Roles/Workload Plane: enable any workload applications run on this Node
* Roles/Control Plane: enable master and etcd services run on this Node

¢ Roles/Infra: enable infra services run on this Node

Note: Combination of multiple roles is possible: Selecting Workload Plane and Infra checkbox will result in
infra services and workload applications run on this Node.

4. Click Create. You will be redirected to the Node list page, and will be shown a notification to confirm the Node
creation:

1.5. Cluster expansion 19

MetalK8s

adrmin

Node Creation x
Node node1 has been created successfully.

MetalK8s Version =

Deploying the Node

After the desired state has been declared, it can be applied to the machine. The MetalK8s GUI uses SaltAPI to orches-
trate the deployment.

1. From the Node list page, click the Deploy button for any Node that has not yet been deployed.

Name = Status ~ Deployment ~

bootstrap Ready
node Unknown

Once clicked, the button changes to Deploying. Click it again to open the deployment status page:

€ Back to nodes list

Node Deployment

X } "20190612071130203596" : [...] I ite
o Node registered

|
° Deployment started

|
o Deploying

£
3

Detailed events are shown on the right of this page, for advanced users to debug in case of errors.

2. When deployment is complete, click Back to nodes list. The new Node should be in a Ready state.

20 Chapter 1. Installation

MetalK8s

1.5.3 Adding a Node from the Command-line

Creating a Manifest

Adding a node requires the creation of a manifest file, following the template below:

apiVersion: vl
kind: Node
metadata:
name: <node_name>
annotations:
metalk8s.scality.com/ssh-key-path: /etc/metalk8s/pki/salt-bootstrap
metalk8s.scality.com/ssh-host: <node control plane IP>
metalk8s.scality.com/ssh-sudo: 'false'
metalk8s.scality.com/ssh-user: 'root'
labels:
metalk8s.scality.com/version: '2.11.6'
<role labels>
spec:
taints: <taints>

Annotations are used by Salt-SSH to connect to the node and deploy it. All annotations are prefixed with metalk8s.
scality.com/:

Anno- Description De-
tation fault
ssh-host | Control plane IP of the node, must be accessible over SSH from the Bootstrap node None
ssh-key- | Path to the private SSH key used to connect to the node None
path

ssh- Whether to use sudo to execute commands or not (root privileges are needed to deploy a node, | false
sudo it must be set to true if ssh-user is not root)

ssh-user | User to connect to the node and run commands root

The combination of <role labels> and <taints> will determine what is installed and deployed on the Node.
roles determine a Node responsibilities. raints are complementary to roles.
* A node exclusively in the control plane with etcd storage

roles and taints both are set to master and etcd. It has the same behavior as the Control Plane checkbox in the
GUI

[...]
metadata:
[...]
labels:
node-role.kubernetes.io/master: '’
node-role.kubernetes.io/etcd: "'
[... (other labels except roles)]
spec:
[...]
taints:
- effect: NoSchedule
key: node-role.kubernetes.io/master

(continues on next page)

1.5. Cluster expansion 21

MetalK8s

(continued from previous page)

- effect: NoSchedule
key: node-role.kubernetes.io/etcd

¢ A worker node dedicated to infra services (see Introduction)

roles and taints both are set to infra. It has the same behavior as the Infra checkbox in the GUI.

[...]
metadata:
[...]
labels:

node-role.kubernetes.io/infra:
[... (other labels except roles)]
spec:
[...]
taints:
- effect: NoSchedule
key: node-role.kubernetes.io/infra

* A simple worker still accepting infra services would use the same role label without the taint

roles are set to node and infra. It’s the same as the checkbox of Workload Plane and Infra in MetalK8s GUI.

CLI-only actions

¢ A Node dedicated to etcd

roles and taints both are set to etcd.

[...]
metadata:
[...]
labels:

node-role.kubernetes.io/etcd:
[... (other labels except roles)]
spec:
[...]
taints:
- effect: NoSchedule
key: node-role.kubernetes.io/etcd

T

Creating the Node Object

Use kubectl to send the manifest file created before to Kubernetes API.

root@ootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf apply -f <path-to-node-
—manifest>
node/<node-name> created

Check that it is available in the API and has the expected roles.

22 Chapter 1. Installation

MetalK8s

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf get nodes

NAME STATUS ROLES AGE
bootstrap Ready bootstrap,etcd,infra,master 12d
<node-name> Unknown <expected node roles> 29s

VERSION
vl.11.7

Deploying the Node

Open a terminal in the Salt Master container using this procedure.

1. Check that SSH access from the Salt Master to the new node is properly configured (see SSH Provisioning).

Note: Salt SSH requires Python 3 to be installed on the remote host to run Salt functions. It will be installed
automatically when deploying the node, though you can send raw shell commands before (using --raw-shell)

if needed.

—'"echo OK'
<node_name>:
retcode:

0
stderr:

stdout:
OK

root@salt-master-bootstrap $ salt-ssh --roster=kubernetes <node_name> --raw-shell

Warning: Permanently added '<ip>' (ECDSA) to the list of known hosts.

2. Start the node deployment.

root@salt-master-bootstrap $ salt-run state.orchestrate metalk8s.orchestrate.deploy_

—node \
saltenv=metalk8s-2.11.6 \
pillar='{"orchestrate": {"node_name": "<node-name>"}}'

. lots of output ...

Summary for bootstrap_master

Succeeded: 7 (changed=7)

Failed: 0

Total states run: 7

Total run time: 121.468 s

1.5. Cluster expansion 23

mailto:root@salt\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{}master\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{}bootstrap

MetalK8s

1.5.4 Checking Cluster Health

During the expansion, it is recommended to check the cluster state between each node addition.

When expanding the control plane, one can check the etcd cluster health:

root@ootstrap $ kubectl -n kube-system exec -ti etcd-bootstrap sh --kubeconfig /etc/

—kubernetes/admin.conf

root@etcd-bootstrap $ etcdctl --endpoints=https://[127.0.0.1]1:2379 \
--cacert=/etc/kubernetes/pki/etcd/ca.crt \
--cert=/etc/kubernetes/pki/etcd/healthcheck-client.crt \
--key=/etc/kubernetes/pki/etcd/healthcheck-client.key \
endpoint health --cluster

https://<first-node-ip>:2379 is healthy: successfully committed proposal: took = 16.

-.285672ms
https://<second-node-ip>:2379 is healthy: successfully committed proposal: took = 43.

—462092ms
https://<third-node-ip>:2379 is healthy: successfully committed proposal: took = 52.

-.879358ms

1.6 Post-Installation Procedure

1.6.1 Provision Storage for Services

After bootstrapping the cluster, the Prometheus and AlertManager services used to monitor the system and the Loki
service, used to aggregate the logs of the platform, will not be running (the respective Pods will remain in Pending
state), because they require persistent storage to be available.

You can either provision these storage volumes on the Bootstrap node, or later on other nodes joining the cluster. It is
even recommended to separate Bootstrap services from Infra services.

To create the required Volume objects, use one of the following volume type depending on the platform.

rawBlockDevice Volumes

Write a YAML file with the following contents, replacing:
¢ <node_name> with the name of the Node on which

* <device_path> with the /dev/ path for the partitions to use

apiVersion: storage.metalk8s.scality.com/vlalphal
kind: Volume
metadata:
name: <node_name>-prometheus
spec:
nodeName: <node_name>
storageClassName: metalk8s
rawBlockDevice: # Choose a device with at least 10GiB capacity
devicePath: <device_path>
template:

(continues on next page)

24 Chapter 1. Installation

MetalK8s

(continued from previous page)

metadata:
labels:
app.kubernetes.io/name: 'prometheus-operator-prometheus'’
apiVersion: storage.metalk8s.scality.com/vlalphal
kind: Volume
metadata:
name: <node_name>-alertmanager
spec:
nodeName: <node_name>
storageClassName: metalk8s
rawBlockDevice: # Choose a device with at least 1GiB capacity
devicePath: <device_path2>
template:
metadata:
labels:
app.kubernetes.io/name: 'prometheus-operator-alertmanager

apiVersion: storage.metalk8s.scality.com/vlalphal
kind: Volume
metadata:
name: <node_name>-1loki
spec:
nodeName: <node_name>
storageClassName: metalk8s
rawBlockDevice: # Choose a device with at least 10GiB capacity
devicePath: <device_path3>
template:
metadata:
labels:
app.kubernetes.io/name: 'loki'

IvmLogicalVolume Volumes

Write a YAML file with the following contents, replacing:
¢ <node_name> with the name of the Node on which

* <vg_name> with the existing LVM VolumeGroup name on this specific Node

apiVersion: storage.metalk8s.scality.com/vlalphal
kind: Volume
metadata:
name: <node_name>-prometheus
spec:
nodeName: <node_name>
storageClassName: metalk8s

lvmLogicalVolume:
vgName: <vg_name> # Choose an existing LVM VolumeGroup

template:

size: 10Gi # Prometheus LogicalVolume should have at least 10GiB capacity

(continues on next page)

1.6. Post-Installation Procedure

25

MetalK8s

(continued from previous page)

metadata:
labels:
app.kubernetes.io/name: 'prometheus-operator-prometheus'’
apiVersion: storage.metalk8s.scality.com/vlalphal
kind: Volume
metadata:
name: <node_name>-alertmanager
spec:
nodeName: <node_name>
storageClassName: metalk8s
lvmLogicalVolume:
vgName: <vg_name> # Choose an existing LVM VolumeGroup
size: 10Gi # Alertmanager LogicalVolume should have at least 1GiB capacity

template:
metadata:

labels:
app.kubernetes.io/name: 'prometheus-operator-alertmanager'

apiVersion: storage.metalk8s.scality.com/vlalphal
kind: Volume
metadata:
name: <node_name>-loki
spec:
nodeName: <node_name>
storageClassName: metalk8s
lvmLogicalVolume:
vgName: <vg_name> # Choose an existing LVM VolumeGroup
size: 10Gi # Loki LogicalVolume should have at least 10GiB capacity
template:
metadata:
labels:
app.kubernetes.io/name: 'loki'

Create Volumes objects

Once this file is created with the right values filled in, run the following command to create the Volume objects (replacing
<file_path> with the path of the aforementioned YAML file):

root@ootstrap $§ kubectl --kubeconfig /etc/kubernetes/admin.conf \
apply -f <file_path>

For more details on the available options for storage management, see this section of the Operational Guide.

26 Chapter 1. Installation

MetalK8s

Loki volume sizing

Since the storage needs for logs greatly depends on the workload and the type of application that run on top of the
MetalKS8s cluster, you need to refer to the documentation provided by your applications to define the ideal size for the
volume.

We still provide some hints for the worst case, which is very unlikely. If the entropy of log messages is high, which
makes them almost incompressible, you will need around 12Mb per thousands of event per hour for an average log line
of 512 bytes.

For 60000 events per hour, with the default retention of 2 weeks:
60 (1000 events) * 24 (hours per day) * 7 (days per week) * 3 (weeks) * 12 Mb =~ 355 Gb
This formula is given to calculate the worst case scenario, but with real application logs, it should be drastically lower.

Regarding the MetalKS8s cluster itself (internal services and system logs), 1Gb per week of retention should be sufficient
in most cases.

Warning: When you calculate the storage needs, you must always add an extra week to your actual retention,
because of the current week of logs.

Since there is no size-based purge mechanism, it is also recommended to add a security margin of +50% volume
space, in case of log burst.

Also, when creating the volume, you should take into account the potential growth of the cluster and workload.

1.6.2 Changing credentials

After a fresh installation, an administrator account is created with default credentials. For production deployments,
make sure to change those credentials and use safer values.

To change Grafana or MetalK8s GUI user credentials, follow this procedure.

1.6.3 Validating the deployment

To ensure the Kubernetes cluster is properly running before scheduling applications, perform the following sanity
checks:

1. Check that all desired Nodes are in a Ready state and show the expected roles:

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
get nodes

NAME STATUS ROLES AGE VERSION

bootstrap Ready bootstrap,etcd,infra,master 42m v1.15.5

node-1 Ready etcd,infra,master 26m v1.15.5

node-2 Ready etcd,infra,master 25m v1.15.5

Use the kubectl describe node <node_name> to get more details about a Node (for instance, to check the
right taints are applied).

2. Check that Pods are in their expected state (most of the time, Running, except for Prometheus and AlertManager
if the required storage was not provisioned yet - see the procedure above).

To look for all Pods at once, use the --all-namespaces flag. On the other hand, use the -n or --namespace
option to select Pods in a given Namespace.

1.6. Post-Installation Procedure 27

MetalK8s

For instance, to check all Pods making up the cluster-critical services:

root@ootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
get pods --namespace kube-system

NAME READY STATUS RESTARTS AGE
apiserver-proxy-bootstrap 1/1 Running © 43m
apiserver-proxy-node-1 1/1 Running 0 2m28s
apiserver-proxy-node-2 1/1 Running 0 9m
calico-kube-controllers-6d8db9bcf5-w5w94 1/1 Running O 43m
calico-node-4vxpp 1/1 Running © 43m
calico-node-hvlkx 1/1 Running 7 23m
calico-node-jhj4r 1/1 Running 0 8m59s
coredns-8576b4bf99-1fjfc 1/1 Running ©0 43m
coredns-8576b4bf99-tnt6b 1/1 Running 0 43m
etcd-bootstrap 1/1 Running © 43m
etcd-node-1 1/1 Running © 3m47s
etcd-node-2 1/1 Running 3 8m58s
kube-apiserver-bootstrap 1/1 Running 0 43m
kube-apiserver-node-1 1/1 Running 0 2m45s
kube-apiserver-node-2 1/1 Running © 7m31s
kube-controller-manager-bootstrap 1/1 Running 3 44m
kube-controller-manager-node-1 1/1 Running 1 2m39s
kube-controller-manager-node-2 1/1 Running 2 7m25s
kube-proxy-gnxtp 1/1 Running 0 28m
kube-proxy-kvtjm 1/1 Running O 43m
kube-proxy-vggzg 1/1 Running O 27m
kube-scheduler-bootstrap 1/1 Running 1 44m
kube-scheduler-node-1 1/1 Running 0 2m39s
kube-scheduler-node-2 1/1 Running 0 7m25s
repositories-bootstrap 1/1 Running 0 44m
salt-master-bootstrap 2/2 Running © 44m
storage-operator-756b87c78f-mjqc5 1/1 Running 1 43m

3. Using the result of the above command, obtain a shell in a running etcd Pod (replacing <etcd_pod_name> with
the appropriate value):

root@ootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
exec --namespace kube-system -it <etcd_pod_name> sh

Once in this shell, use the following to obtain health information for the etcd cluster:

root@etcd-bootstrap $ etcdctl --endpoints=https://[127.0.0.1]:2379 \
--cacert=/etc/kubernetes/pki/etcd/ca.crt \
--cert=/etc/kubernetes/pki/etcd/healthcheck-client.crt \
--key=/etc/kubernetes/pki/etcd/healthcheck-client.key \
endpoint health --cluster

https://<first-node-ip>:2379 is healthy: successfully committed proposal: took = 16.
—285672ms

https://<second-node-ip>:2379 is healthy: successfully committed proposal: took =_
—43.462092ms

https://<third-node-ip>:2379 is healthy: successfully committed proposal: took = 52.
—879358ms

4. Finally, check that the exposed services are accessible, using the information from this document.

28 Chapter 1. Installation

MetalK8s

1.7 Accessing Cluster Services

1.7.1 MetalK8s GUI

This GUI is deployed during the Bootstrap installation, and can be used for operating, extending and upgrading a
MetalK8s cluster.

Gather Required Information

Get the ingress control plane IP.

root@bootstrap $ kubectl --kubeconfig=/etc/kubernetes/admin.conf \
get svc -n metalk8s-ingress ingress-nginx-control-plane-controller \
-o=jsonpath="{.spec.externalIPs[0]}{"\n"}"'

<the ingress control plane IP>

Use MetalK8s Ul

Once you have gathered the IP address and the port number, open your web browser and navigate to the URL https:/
/<ip>:8443, replacing placeholders with the values retrieved before.

The login page is loaded, and should resemble the following:

¢33 scAuTY

Log in to Your Account

Email Address

email address

Password

password

Log in with the default login / password (admin@metalk8s.invalid/ password).

Note: To change the default password as provided above, refer to this procedure.

The landing page should look like this:

1.7. Accessing Cluster Services 29

MetalK8s

5 SCALITY METAL L ATFORM

Cluster Status : Everything is up and running

Alerts

Name #* Severity * Message = Active Since *

CPUThrottlingHigh 74% throttling of CPU in namespace monitoring for node-exporter. 6/12/2019 1:05:17 AM
CPUThrottlingHigh 27% throttling of CPU in namespace monitoring for prometheus-config-reloader. 6/12/2019 9:03:47 AM
DeadMansSwitch ® This is a DeadMansSwitch meant to ensure that the entire alerting pipeline is functional. 6/12/2019 1:03:45 AM
KubeControllerManagerDown [] KubeControllerManager has disappeared from Prometheus target discovery. 6/12/2019 1:03:47 AM
KubeSchedulerDown [] KubeScheduler has disappeared from Prometheus target discovery. 6/12/2019 1:03:47 AM
KubeStateMetricsDown [] KubeStateMetrics has disappeared from Prometheus target discovery. 6/12/2019 8:49:47 AM
TargetDown 100% of the kube-scheduler targets are down. 6/12/2019 1:04:45 AM
TargetDown 100% of the kube-controller-manager targets are down. 6/12/2019 1:04:15 AM

This page displays two monitoring indicators:
1. the Cluster Status, which evaluates if control plane services are all up and running

2. the list of alerts stored in Alertmanager.

1.7.2 Grafana

Grafana is available on the same host as the MetalK8s UI, under /grafana. Log in with the default credentials:
admin@metalk8s.invalid / password.

1.7.3 Salt

MetalK8s uses SaltStack to manage the cluster. The Salt Master runs in a Pod on the Bootstrap node.

The Pod name is salt-master-<bootstrap hostname>, and it contains two containers: salt-master and
salt-api.

To interact with the Salt Master with the usual CLIs, open a terminal in the salt-master container (assuming the
Bootstrap hostname to be bootstrap):

root@bootstrap $ kubectl exec -it -n kube-system -c salt-master \
--kubeconfig /etc/kubernetes/admin.conf \
salt-master-bootstrap bash

30 Chapter 1. Installation

https://www.saltstack.com/

MetalK8s

1.8 Advanced guide

1.8.1 Multiple CIDRs network

In the Bootstrap Configuration it’s possible to provide several CIDRs for a single network, it’s needed when several
nodes does not sit in the same network.

networks:
controlPlane:
cidr:
- 10.100.1.0/28
- 10.200.1.0/28
workloadPlane:
cidr:
- 10.100.2.0/28
- 10.200.2.0/28

This kind of deployment needs good knowledge about networking, as each workload node needs to be able to commu-
nicate with all others, even those in a different workload CIDR.

In this case /P-in-IP encapsulation is likely needed.

Some explanation can be found about this subject in Calico documentation.

1.9 Troubleshooting

This section describes common issues users face during and after a MetalK8s installation.

If your issue is not presented here, create a GitHub issue or open a new GitHub discussion.

1.9.1 Bootstrap Installation Errors

Bootstrap installation fails for no obvious reason
If the Metalk8s installation fails and the console output does not provide enough information to identify the cause of
the failure, re-run the installation with the verbose flag (--verbose).

root@ootstrap $ /srv/scality/metalk8s-2.11.6/bootstrap.sh --verbose

Errors after restarting the bootstrap node
If you reboot the bootstrap node and some containers (especially the salt-master container) do not start, perform the
following checks:

1. Ensure that the MetalK8s ISO is mounted properly.

[root@bootstrap vagrant]# mount | grep /srv/scality/metalk8s-2.11.6
/home/centos/metalk8s.iso on /srv/scality/metalk8s-2.11.6 type is09660 (ro,relatime)

2. If the ISO is unmounted, run the following command to check the the status of the ISO file and remount it
automatically.

1.8. Advanced guide 31

https://docs.projectcalico.org/networking/vxlan-ipip
https://github.com/scality/metalk8s/issues/new/choose
https://github.com/scality/metalk8s/discussions/new
mailto:root@bootstrap
mailto:root@bootstrap

MetalK8s

[root@bootstrap vagrant]# salt-call state.sls metalk8s.archives.mounted.
—saltenv=metalk8s-2.11.6
Summary for local

Succeeded: 3
Failed: 0

Bootstrap fails and console log is unscrollable

If the bootstrap process fails during MetalK8s installation and the console output is unscrollable, consult the bootstrap
logs in /var/log/metalk8s/bootstrap.log.

Bootstrap fails with “Invalid networks:service CIDR - no route exists”

This error happens if there is no route matching this network CIDR and no default route configured.

You can solve this issue by either adding a default route to your host or adding a dummy network interface used to
define a route for this network.

Configuring a default route:

To configure a default route, refer to the official documentation of your Linux distribution.

Configuring a dummy interface:

CentOS / RHEL 7

Create the dummy-metalk8s interface configuration:

cat > /etc/sysconfig/network-scripts/ifcfg-dummy-metalk8s << 'EOF'
ONBOOT=yes

DEVICE=dummy

NM_CONTROLLED=no

NAME=dummy-metalk8s

EOF

Create the ifup-dummy network script:

cat > /etc/sysconfig/network-scripts/ifup-dummy << 'EOF'
#!/bin/sh
Network configuration file for dummy network interface

. /etc/init.d/functions

cd /etc/sysconfig/network-scripts
./network-functions

[-f ../network] & . ../network

CONFIG=${1}

(continues on next page)

32 Chapter 1. Installation

mailto:root@bootstrap

MetalK8s

(continued from previous page)

need_config "${CONFIG}"
source_config

modprobe --first-time ${DEVICETYPE} numdummies=0 2> /dev/null || echo dummy..
—module already loaded

ip link add ${DEVNAME} type ${DEVICETYPE}

[[-n "${IPADDR}" && -n "${NETMASK}"]] && ip address add ${IPADDR}/${NETMASK}.
—dev ${DEVNAME}

ip link set ${DEVNAME} up

/etc/sysconfig/network-scripts/ifup-routes ${DEVICE} ${NAME}

EOF

chmod +x /etc/sysconfig/network-scripts/ifup-dummy

Create the ifdown-dummy network script:

cat > /etc/sysconfig/network-scripts/ifdown-dummy << 'EOF'
#!/bin/sh
. /etc/init.d/functions

cd /etc/sysconfig/network-scripts
./network-functions

[-f ../network] & . ../network
CONFIG=${1}

need_config "${CONFIG}"

source_config

ip link set ${DEVNAME} down

ip link del ${DEVNAME} type ${DEVICETYPE}

EOF

chmod +x /etc/sysconfig/network-scripts/ifdown-dummy

Create the route-dummy-metalk8s network script:

cat > /etc/sysconfig/network-scripts/route-dummy-metalk8s << EOF

$(salt-call --local pillar.get networks:service --out=txt | cut -d' ' -f2-).
—dev dummy-metalk8s
EOF

Start the dummy-metalk8s interface:

ifup dummy-metalk8s

CentOS / RHEL 8 (and other NetworkManager based dists)

Retrieve the service network CIDR:

salt-call --local pillar.get networks:service --out=txt | cut -d' ' -f2-

1.9. Troubleshooting 33

MetalK8s

Create the dummy-metalk8s interface:

nmcli connection add type dummy ifname dummy-metalk8s ipv4.method manual ipv4.
—.addresses <dummy-iface-ip> ipv4.routes <network-cidr>

Note: Replace <dummy-iface-ip> by any available IP in the previously retrieved network CIDR (e.g.
10.96.10.96 for a 10.96.0.0/12 network CIDR) and <network-cidr> by the network CIDR.

Start the dummy-metalk8s interface:

nmcli connection up dummy-dummy-metalk8s

1.9.2 Pod and Service CIDR Conflicts

If, after installing a MetalK8s cluster you notice routing issues in pod-to-pod communication:

1. Check the configured values for the internal pod and service networks.

[root@bootstrap]# salt-call pillar.get networks
local:
control_plane:
172.21.254.0/28

pod:
10.233.0.0/16

service:
10.96.0.0/12

workload_plane:
172.21.254.32/27

2. Ensure that the configured IP ranges (CIDR notation) do not conflict with your infrastructure.

34 Chapter 1. Installation

CHAPTER
TWO

OPERATION

This guide describes MetalK8s ISO preparation steps, upgrade and downgrade guidelines, supported versions and best
practices required for operating MetalK8s. Refer to the /nstallation if you do not have a working MetalK8s setup.

2.1 Cluster Monitoring

This section covers the MetalK8s monitoring and alerting stack operations. It also describes the metrics monitored
using Prometheus, with the list of pre-configured alerting and recording rules.

2.1.1 Monitoring Stack

MetalK8s ships with a monitoring stack that uses charts, counts, and graphs to provide a cluster-wide view of cluster
health, pod status, node status, and network traffic status. Access the Grafana Service for monitored statistics provided
once MetalK8s has been deployed.

The MetalK8s monitoring stack consists of the following main components:
o Alertmanager
* Grafana
* Kube-state-metrics
e Prometheus

* Prometheus Node-exporter

2.1.2 Prometheus

In a MetalK8s cluster, the Prometheus service records real-time metrics in a time series database. Prometheus can
query a list of data sources called “exporters” at a specific polling frequency, and aggregate this data across the various
sources.

Prometheus uses a special language, Prometheus Query Language (PromQL), to write alerting and recording rules.

35

https://github.com/scality/metalk8s/
https://github.com/scality/metalk8s/

MetalK8s

Default Alert Rules

Alert rules enable a user to specify a condition that must occur before an external system like Slack is notified. For
example, a MetalK8s administrator might want to raise an alert for any node that is unreachable for more than one
minute.

Out of the box, MetalK8s ships with preconfigured alert rules, which are written as PromQL queries. The table below
outlines all the preconfigured alert rules exposed from a newly deployed MetalK8s cluster.

To customize predefined alert rules, refer to Prometheus Configuration Customization.

Table 1: Default Prometheus Alerting rules

Name Severity | Description

AlertingServiceAtRisk critical The alerting service is at risk.

ClusterAtRisk critical The cluster is at risk.

CoreServicesAtRisk critical The Core services are at risk.

KubernetesControlPlane AtRisk critical The Kubernetes control plane is at risk.
MonitoringServiceAtRisk critical The monitoring service is at risk.

NodeAtRisk critical The node {{ $labels.instance }} is at risk.
ObservabilityServicesAtRisk critical The observability services are at risk.

PlatformServicesAtRisk critical The Platform services are at risk.

SystemPartitionAtRisk critical The system partition {{ $labels.mountpoint } } on node {{ $labe
VolumeAtRisk critical The volume {{ $labels.persistentvolumeclaim }} in namespace |
AccessServicesDegraded warning | The Access services are degraded.

AlertingServiceDegraded warning | The alerting service is degraded.
AuthenticationServiceDegraded warning | The Authentication service for K8S API is degraded.
BootstrapServicesDegraded warning | The MetalK8s Bootstrap services are degraded.
ClusterDegraded warning | The cluster is degraded.

CoreServicesDegraded warning | The Core services are degraded.

DashboardingServiceDegraded warning | The dashboarding service is degraded.
IngressControllerServicesDegraded warning | The Ingress Controllers for control plane and workload plane are
KubernetesControlPlaneDegraded warning | The Kubernetes control plane is degraded.
LoggingServiceDegraded warning | The logging service is degraded.

MonitoringServiceDegraded warning | The monitoring service is degraded.

NetworkDegraded warning | The network is degraded.

NodeDegraded warning | The node {{ $labels.instance }} is degraded.
ObservabilityServicesDegraded warning | The observability services are degraded.
PlatformServicesDegraded warning | The Platform services are degraded.

SystemPartitionDegraded warning | The system partition {{ $labels.mountpoint } } on node {{ $labe
VolumeDegraded warning | The volume {{ $labels.persistentvolumeclaim }} in namespace |
AlertmanagerClusterCrashlooping critical Half or more of the Alertmanager instances within the same clus
AlertmanagerClusterDown critical Half or more of the Alertmanager instances within the same clus
AlertmanagerClusterFailedToSendAlerts critical All Alertmanager instances in a cluster failed to send notificatior
AlertmanagerClusterFailedToSendAlerts warning | All Alertmanager instances in a cluster failed to send notificatior
AlertmanagerConfigInconsistent critical Alertmanager instances within the same cluster have different co
AlertmanagerFailedReload critical Reloading an Alertmanager configuration has failed.
AlertmanagerFailedToSendAlerts warning | An Alertmanager instance failed to send notifications.
AlertmanagerMembersInconsistent critical A member of an Alertmanager cluster has not found all other clu
etcdGRPCRequestsSlow critical eted cluster “{{ $labels.job }}”: gRPC requests to {{ $labels.grj
etcdHTTPRequestsSlow warning | etcd instance {{ $labels.instance }} HTTP requests to {{ $labels
etcdHighCommitDurations warning | etcd cluster “{{ $labels.job }}”: 99th percentile commit duratior
etcdHighFsyncDurations warning | etcd cluster “{{ $labels.job }}”: 99th percentile fync durations a

36 Chapter 2. Operation

MetalK8s

Table 1 - continued from previous page

Name Severity | Description

etcdHighNumberOfFailedGRPCRequests critical etcd cluster “{{ $labels.job }}”: {{ $value }}% of requests for {
etcdHighNumberOfFailedGRPCRequests warning | etcd cluster “{{ $labels.job }}”: {{ $value }}% of requests for {
etcdHighNumberOfFailedHTTPRequests critical {{ $value }}% of requests for {{ $labels.method }} failed on etc
etcdHighNumberOfFailedHTTPRequests warning | {{ $value }}% of requests for {{ $labels.method }} failed on etc
etcdHighNumberOfFailedProposals warning | eted cluster “{{ $labels.job }}”: {{ $value }} proposal failures v
etcdHighNumberOfLeaderChanges warning | etcd cluster “{{ $labels.job }}”: instance {{ $labels.instance }} |
etcdInsufficientMembers critical eted cluster “{{ $labels.job }}”: insufficient members ({{ $value
etcdMemberCommunicationSlow warning | etcd cluster “{{ $labels.job }}”: member communication with {
etcdNoLeader critical eted cluster “{{ $labels.job }}”: member {{ $labels.instance }}
TargetDown warning | One or more targets are unreachable.

Watchdog none An alert that should always be firing to certify that Alertmanage:
KubeAPIErrorBudgetBurn warning | The API server is burning too much error budget.
KubeAPIErrorBudgetBurn critical The API server is burning too much error budget.
KubeAPIErrorBudgetBurn warning | The API server is burning too much error budget.
KubeAPIErrorBudgetBurn critical The API server is burning too much error budget.
KubeStateMetricsListErrors critical kube-state-metrics is experiencing errors in list operations.
KubeStateMetricsShardingMismatch critical kube-state-metrics sharding is misconfigured.
KubeStateMetricsShardsMissing critical kube-state-metrics shards are missing.
KubeStateMetricsWatchErrors critical kube-state-metrics is experiencing errors in watch operations.
KubeContainerWaiting warning | Pod container waiting longer than 1 hour
KubeDaemonSetMisScheduled warning | DaemonSet pods are misscheduled.
KubeDaemonSetNotScheduled warning | DaemonSet pods are not scheduled.
KubeDaemonSetRolloutStuck warning | DaemonSet rollout is stuck.
KubeDeploymentGenerationMismatch warning | Deployment generation mismatch due to possible roll-back
KubeDeploymentReplicasMismatch warning | Deployment has not matched the expected number of replicas.
KubeHpaMaxedOut warning | HPA is running at max replicas

KubeHpaReplicasMismatch warning | HPA has not matched descired number of replicas.
KubeJobCompletion warning | Job did not complete in time

KubeJobFailed warning | Job failed to complete.

KubePodCrashLooping warning | Pod is crash looping.

KubePodNotReady warning | Pod has been in a non-ready state for more than 15 minutes.
KubeStatefulSetGenerationMismatch warning | StatefulSet generation mismatch due to possible roll-back
KubeStatefulSetReplicasMismatch warning | Deployment has not matched the expected number of replicas.
KubeStatefulSetUpdateNotRolledOut warning | StatefulSet update has not been rolled out.

CPUThrottlingHigh info Processes experience elevated CPU throttling.
KubeCPUOvercommit warning | Cluster has overcommitted CPU resource requests.
KubeCPUQuotaOvercommit warning | Cluster has overcommitted CPU resource requests.
KubeMemoryOvercommit warning | Cluster has overcommitted memory resource requests.
KubeMemoryQuotaOvercommit warning | Cluster has overcommitted memory resource requests.
KubeQuotaAlmostFull info Namespace quota is going to be full.

KubeQuotaExceeded warning | Namespace quota has exceeded the limits.

KubeQuotaFullyUsed info Namespace quota is fully used.

KubePersistentVolumeErrors critical PersistentVolume is having issues with provisioning.
KubePersistentVolumeFillingUp critical PersistentVolume is filling up.

KubePersistentVolumeFillingUp warning | PersistentVolume is filling up.

KubeClientErrors warning | Kubernetes API server client is experiencing errors.
KubeVersionMismatch warning | Different semantic versions of Kubernetes components running.
Aggregated APIDown warning | An aggregated API is down.

Aggregated APIErrors warning | An aggregated API has reported errors.

2.1. Cluster Monitoring

37

MetalK8s

Table 1 - continued from previous page

Name Severity | Description

Kube APIDown critical Target disappeared from Prometheus target discovery.
KubeAPITerminatedRequests warning | The apiserver has terminated {{ $value | humanizePercentage }}
KubeClientCertificateExpiration critical Client certificate is about to expire.
KubeClientCertificateExpiration warning | Client certificate is about to expire.
KubeControllerManagerDown critical Target disappeared from Prometheus target discovery.
KubeNodeNotReady warning | Node is not ready.

KubeNodeReadinessFlapping warning | Node readiness status is flapping.

KubeNodeUnreachable warning | Node is unreachable.

KubeletClientCertificateExpiration critical Kubelet client certificate is about to expire.
KubeletClientCertificateExpiration warning | Kubelet client certificate is about to expire.
KubeletClientCertificateRenewalErrors warning | Kubelet has failed to renew its client certificate.

KubeletDown critical Target disappeared from Prometheus target discovery.
KubeletPlegDurationHigh warning | Kubelet Pod Lifecycle Event Generator is taking too long to reli:
KubeletPodStartUpLatencyHigh warning | Kubelet Pod startup latency is too high.
KubeletServerCertificateExpiration critical Kubelet server certificate is about to expire.
KubeletServerCertificateExpiration warning | Kubelet server certificate is about to expire.
KubeletServerCertificateRenewalErrors warning | Kubelet has failed to renew its server certificate.
KubeletTooManyPods warning | Kubelet is running at capacity.

KubeSchedulerDown critical Target disappeared from Prometheus target discovery.
NodeClockNotSynchronising warning | Clock on {{ $labels.instance }} is not synchronising. Ensure N'T
NodeClockSkewDetected warning | Clock on {{ $labels.instance }} is out of sync by more than 300s
NodeFileDescriptorLimit critical Kernel is predicted to exhaust file descriptors limit soon.
NodeFileDescriptorLimit warning | Kernel is predicted to exhaust file descriptors limit soon.
NodeFilesystemAlmostOutOfFiles critical Filesystem has less than 8% inodes left.
NodeFilesystemAlmostOutOfFiles warning | Filesystem has less than 15% inodes left.
NodeFilesystemAlmostOutOfSpace critical Filesystem has less than 12% space left.
NodeFilesystemAlmostOutOfSpace warning | Filesystem has less than 20% space left.
NodeFilesystemFilesFillingUp critical Filesystem is predicted to run out of inodes within the next 4 hot
NodeFilesystemFilesFillingUp warning | Filesystem is predicted to run out of inodes within the next 24 h
NodeFilesystemSpaceFillingUp critical Filesystem is predicted to run out of space within the next 4 hou
NodeFilesystemSpaceFillingUp warning | Filesystem is predicted to run out of space within the next 24 ho
NodeHighNumberConntrackEntriesUsed warning | Number of conntrack are getting close to the limit
NodeNetworkReceiveErrs warning | Network interface is reporting many receive errors.
NodeNetwork TransmitErrs warning | Network interface is reporting many transmit errors.
NodeRAIDDegraded critical RAID Array is degraded

NodeRAIDDiskFailure warning | Failed device in RAID array

NodeTextFileCollectorScrapeError warning | Node Exporter text file collector failed to scrape.
NodeNetworkInterfaceFlapping warning | Network interface is often changin it’s status
PrometheusBadConfig critical Failed Prometheus configuration reload.
PrometheusDuplicateTimestamps warning | Prometheus is dropping samples with duplicate timestamps.
PrometheusErrorSendingAlertsToAnyAlertmanager critical Prometheus encounters more than 3% errors sending alerts to an
PrometheusErrorSendingAlertsToSomeAlertmanagers | warning | Prometheus has encountered more than 1% errors sending alerts
PrometheusLabelLimitHit warning | Prometheus has dropped targets because some scrape configs ha
PrometheusMissingRuleEvaluations warning | Prometheus is missing rule evaluations due to slow rule group e
PrometheusNotConnectedToAlertmanagers warning | Prometheus is not connected to any Alertmanagers.
PrometheusNotIngestingSamples warning | Prometheus is not ingesting samples.
PrometheusNotificationQueueRunningFull warning | Prometheus alert notification queue predicted to run full in less t
PrometheusOutOfOrderTimestamps warning | Prometheus drops samples with out-of-order timestamps.
PrometheusRemoteStorageFailures critical Prometheus fails to send samples to remote storage.

38

Chapter 2. Operation

MetalK8s

Table 1 - continued from previous page

Name Severity | Description

PrometheusRemote WriteBehind critical Prometheus remote write is behind.
PrometheusRemoteWriteDesiredShards warning | Prometheus remote write desired shards calculation wants to rur
PrometheusRuleFailures critical Prometheus is failing rule evaluations.
PrometheusTSDBCompactionsFailing warning | Prometheus has issues compacting blocks.
PrometheusTSDBReloadsFailing warning | Prometheus has issues reloading blocks from disk.
PrometheusTargetLimitHit warning | Prometheus has dropped targets because some scrape configs ha
PrometheusTargetSyncFailure critical Prometheus has failed to sync targets.
PrometheusOperatorListErrors warning | Errors while performing list operations in controller.
PrometheusOperatorNodeLookupErrors warning | Errors while reconciling Prometheus.
PrometheusOperatorNotReady warning | Prometheus operator not ready
PrometheusOperatorReconcileErrors warning | Errors while reconciling controller.
PrometheusOperatorRejectedResources warning | Resources rejected by Prometheus operator
PrometheusOperatorSyncFailed warning | Last controller reconciliation failed
PrometheusOperatorWatchErrors warning | Errors while performing watch operations in controller.

Snapshot Prometheus Database

To snapshot the database, you must first enable the Prometheus admin API.

To generate a snapshot, use the sosreport utility with the following options:

root@host # sosreport --batch --build -o metalk8s -kmetalk8s.prometheus-snapshot=True

The name of the generated archive is printed on the console output and the Prometheus snapshot can be found under

prometheus_snapshot directory.

Warning: You must ensure you have sufficient disk space (at least the size of the Prometheus volume) under
/var/tmp or change the archive destination with --tmp-dir=<new_dest> option.

2.2 Account Administration

This section covers MetalK8s account administration operations, from user authentication and identity management to

user authorization.

2.2.1 User Authentication and Identity Management

In MetalK8s, user authentication and identity management are driven by the integration of kube-apiserver and Dex,

an OpenlID Connect (OIDC) provider.

Kubernetes API enables OIDC as one authentication strategy (it also supports certificate-based authentication) by

trusting Dex as an OIDC provider.

Dex can authenticate users against:

* astatic user store (stored in configuration),

* a connector-based interface, allowing plug-ins from such external providers as LDAP, SAML, GitHub, Active

Directory and others to plug in.

2.2. Account Administration

39

MetalK8s

Note: Out of the box, MetalK8s enables OIDC-based authentication for its UI and Grafana service.

Administering Grafana and MetalK8s Ul
When MetalK8s is first installed, the Ul and Grafana service are set with the default login credentials
admin@metalk8s.invalid, and password.

This default user is defined as a static user in the Dex configuration to enable MetalK8s administrators’ first access to
these services. Change the default password after the first login.

Note: The MetalK8s Ul and Grafana are both configured to use OIDC as an authentication mechanism, and trust Dex
as a provider. Changing the Dex configuration, including the default credentials, affects both Uls.

To access the MetalK8s UI and Grafana service, refer to Accessing Cluster Services.

Adding a Static User

To add a static user for the MetalK8s UI and or the Grafana service, perform the following steps from the bootstrap
node.

1. Generate a berypt hash of your password.

root@ootstrap $ htpasswd -nBC 14 "" | tr -d ':'
New password:

Re-type new password:

<your hash here, starting with "$2y$14$">

2. Generate a unique identifier.

root@bootstrap $ python -c 'import uuid; print uuid.uuid4()’'

3. Add a new entry in the staticPasswords list. Use the password hash and user ID previously generated, and
choose a new email and user name.

root@bootstrap $§ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmap metalk8s-dex-config -n metalk8s-auth

[...]
data:
config.yaml: |-

(continues on next page)

40 Chapter 2. Operation

MetalK8s

(continued from previous page)

4. Apply your changes.

root@bootstrap $ STATES=$(printf ",metalk8s.addons.%s.deployed” \
dex prometheus-operator ui)
root@bootstrap $ kubectl exec -n kube-system -c salt-master \
--kubeconfig /etc/kubernetes/admin.conf \
salt-master-bootstrap -- salt-run state.sls \
"${STATES:1}" saltenv=metalk8s-2.11.6

5. Bind the user to an existing (Cluster) Role using a ClusterRoleBlinding.

6. Check that the user has been successfully added. If so, log into the MetalK8s UI using the new email and
password.

Changing Static User Password

Important: Default admin user

A new MetalK8s installation is supplied with a default administrator account and a predefined password (see Use
MetalK8s UI). Change this password if the control plane network is accessible to untrusted clients.

To change the default password for the MetalK8s UI or the Grafana service, perform the following steps from the
Bootstrap node.

1. Generate a berypt hash of the new password.

root@ootstrap $§ htpasswd -nBC 14 "" | tr -d ':'
New password:

Re-type new password:

<your hash here, starting with "$2y$148$">

2. Find the entry for the selected user in the staticPasswords list and update its hash.

root@ootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmap metalk8s-dex-config -n metalk8s-auth

#[...]
data:
config.yaml: |-

(continues on next page)

2.2. Account Administration 41

MetalK8s

(continued from previous page)

3. Apply your changes.

root@bootstrap $ kubectl exec -n kube-system -c salt-master \
--kubeconfig /etc/kubernetes/admin.conf \
salt-master-bootstrap -- salt-run state.sls \
metalk8s.addons.dex.deployed saltenv=metalk8s-2.11.6

4. Check that the password has been changed. If so, log into the MetalK8s UI using the new password.

2.2.2 User Authorization

Kubernetes API

To authorize users and groups against the Kubernetes API, the AP/ Server relies on RBAC (Role-Based Access Control),
through the use of special API objects:
* Roles and ClusterRoles, which define specific permissions on a set of API resources,

* RoleBindings and ClusterRoleBindings, which map a user or group to a set of Roles or ClusterRoles.

Note: MetalK8s includes pre-provisioned ClusterRoles. Platform administrators can create new Roles or ClusterRoles
or refer to existing ones.

ClusterRoles

¢ Obtain the list of available ClusterRoles.

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
get clusterroles

¢ Describe a ClusterRole for more information.

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
describe clusterrole <name>

* The pre-provisioned static user admin@metalk8s.invalid is already bound to the cluster-admin ClusterRole,
which grants cluster-wide permissions to all exposed APIs.

root@ootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
describe clusterrole cluster-admin

Name: cluster-admin

Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
PolicyRule:

Resources Non-Resource URLs Resource Names Verbs

(continues on next page)

42 Chapter 2. Operation

MetalK8s

(continued from previous page)

LE [l L] []
[*] [l [*]

For more information on Kubernetes authorization mechanisms, refer to the RBAC documentation.

ClusterRoleBindings

To bind one or more users to an existing ClusterRole in all namespaces, follow this procedure.

1. Create a ClusterRoleBinding manifest (role_binding.yaml) from the following template.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding

metadata:

name: <role-binding-name-of-your-choice>
subjects:

- kind: User

name: <email>
apiGroup: rbac.authorization.k8s.io
roleRef:
kind: ClusterRole
name: <target-cluster-role>
apiGroup: rbac.authorization.k8s.io

2. Apply the manifest.

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
apply -f role_binding.yaml

To bind one or more groups to an existing ClusterRole in all namespaces, follow this procedure.

1. Create a ClusterRoleBinding manifest (role_binding.yaml) from the following template.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding

metadata:

name: <role-binding-name-of-your-choice>
subjects:

- kind: Group

name: <group-name>
apiGroup: rbac.authorization.k8s.io
roleRef:
kind: ClusterRole
name: <target-cluster-role>
apiGroup: rbac.authorization.k8s.io

2. Apply the manifest.

root@ootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
apply -f role_binding.yaml

2.2. Account Administration 43

https://kubernetes.io/docs/reference/access-authn-authz/rbac/

MetalK8s

2.3 Cluster and Services Configurations

This section contains information describing the list of available Cluster and Services Configurations including proce-
dures for customizing and applying any given Cluster and Services Configurations.

2.3.1 Default Service Configurations

MetalK8s addons (Alertmanager, Dex, Grafana, Prometheus and UI) ships with default runtime service configura-
tions required for basic service deployment. Find below an exhaustive list of available default Service Configurations
deployed in a MetalK8s cluster.

Alertmanager Default Configuration

Alertmanager handles alerts sent by Prometheus. It takes care of deduplicating, grouping, and routing them to the
correct receiver integration such as email, PagerDuty, or OpsGenie. It also takes care of silencing and inhibition of
alerts.

The default configuration values for Alertmanager are specified below:

Configuration of the Alertmanager service
apiVersion: addons.metalk8s.scality.com
kind: AlertmanagerConfig
spec:
Configure the Alertmanager Deployment
deployment :
replicas: 1
notification:
config:
global:
resolve_timeout: 5m
templates: []
route:
group_by: ['job']
group_wait: 30s
group_interval: 5m
repeat_interval: 12h
receiver: 'metalk8s-alert-logger'
routes:
- receiver: 'metalk8s-alert-logger'
continue: True
receivers:
- name: 'metalk8s-alert-logger’
webhook_configs:
- send_resolved: True
url: 'http://metalk8s-alert-logger:19094/'
inhibit_rules: []

See Alertmanager Configuration Customization to override these defaults.

44 Chapter 2. Operation

MetalK8s

Dex Default Configuration

Dex is an Identity Provider that drives user authentication and identity management in a MetalK8s cluster.

The default configuration values for Dex are specified below:

Defaults for configuration of Dex (0IDC)
apiVersion: addons.metalk8s.scality.com/vlalpha2
kind: DexConfig

spec:
Deployment configuration
deployment:
replicas: 2
affinity:
podAntiAffinity:
soft:
- topologyKey: kubernetes.io/hostname
- topologyKey: my.second.important/topologyKey
weight: 42
hard:
- topologyKey: kubernetes.io/hostname

Dex server configuration
config:
issuer: {{ control_plane_ingress_ep }}/oidc

storage:

config:
inCluster: true
type: kubernetes

logger:
level: debug
https: 0.0.0.0:5554
tlsCert: /etc/dex/tls/https/server/tls.crt
tlsKey: /etc/dex/tls/https/server/tls.key

frontend:
dir: /srv/dex/web/
theme: scality
issuer: MetalK8s

connectors: []

oauth2:
alwaysShowLoginScreen: true
skipApprovalScreen: true
responseTypes: ["code", "token", "id_token"]

expiry:
signingKeys: "6h"
idTokens: "24h"

{#- FIXME: client secrets shouldn't be hardcoded #}

(continues on next page)

2.3. Cluster and Services Configurations 45

MetalK8s

(continued from previous page)

{#- TODO: allow overriding these predefined clients #}
staticClients:
- id: oidc-auth-client
name: oidc-auth-client
redirectURIs:
- urn:ietf:wg:oauth:2.0:00b
secret: lkfa9jaf3kfakqyeoikfjakf93k21l
trustedPeers:
- metalk8s-ui
- grafana-ui
- id: metalk8s-ui
name: MetalK8s UI
redirectURIs:
- {{ control_plane_ingress_ep }}/{{ metalk8s_ui_config.spec.basePath.lstrip('/"') }}
secret: ybrMJIpVMQxsiZw26Mh]zCjA2ut
- id: grafana-ui
name: Grafana UI
redirectURIs:
- {{ control_plane_ingress_ep }}/grafana/login/generic_oauth
secret: 41gK98NcsWG5qBRHIUQYM1

enablePasswordDB: true
staticPasswords: []

See Dex Configuration Customization for Dex configuration customizations.

Grafana Default Configuration

Grafana is a web interface used to visualize and analyze metrics scraped by Prometheus, with nice graphs.

The default configuration values for Grafana are specified below:

Configuration of the Grafana service
apiVersion: addons.metalk8s.scality.com
kind: GrafanaConfig
spec:
Configure the Grafana Deployment
deployment:
replicas: 1

Prometheus Default Configuration

Prometheus is responsible for monitoring all the applications and systems in the MetalK8s cluster. It scrapes and stores
various metrics from these systems and then analyze them against a set of alerting rules. If a rule matches, Prometheus
sends an alert to Alertmanager.

The default configuration values for Prometheus are specified below:

Configuration of the Prometheus service
apiVersion: addons.metalk8s.scality.com
kind: PrometheusConfig

(continues on next page)

46 Chapter 2. Operation

MetalK8s

(continued from previous page)

spec:
Configure the Prometheus Deployment
deployment :
replicas: 1
config:

retention_time: "10d"
retention_size: "0" # "0" to disable size-based retention
enable_admin_api: false
serviceMonitor:
kubelet:
scrapeTimeout: 10s
rules:
node_exporter:
node_filesystem_space_filling_up:
warning:
hours: 24 # Hours before there is no space left
threshold: 40 # Min space left to trigger prediction
critical:
hours: 4
threshold: 20
node_filesystem_almost_out_of_space:
warning:
available: 20 # Percentage of free space left
critical:
available: 12
node_filesystem_files_filling_up:
warning:
hours: 24 # Hours before there is no inode left
threshold: 40 # Min space left to trigger prediction
critical:
hours: 4
threshold: 20
node_filesystem_almost_out_of_files:
warning:
available: 15 # Percentage of free inodes left
critical:
available: 8
node_network_receive_errors:
warning:
error_rate: 0.01 # Rate of receive errors for the last 2m
node_network_transmit_errors:
warning:
error_rate: 0.01 # Rate of transmit errors for the last 2m
node_high_number_conntrack_entries_used:
warning:
threshold: 0.75
node_clock_skew_detected:
warning:
threshold:
high: 0.05
low: -0.05
node_clock_not_synchronising:

(continues on next page)

2.3. Cluster and Services Configurations 47

MetalK8s

(continued from previous page)

warning:
threshold: 0
node_raid_degraded:
critical:
threshold: 1
node_raid_disk_failure:
warning:
threshold: 1

Loki Default Configuration

Loki is a log aggregation system, its job is to receive logs from collectors (fluent-bit), store them on persistent storage,

then make them queryable through its API.

The default configuration values for Loki are specified below:

Configuration of the Loki service
apiVersion: addons.metalk8s.scality.com
kind: LokiConfig
spec:
deployment:
replicas: 1
resources:
requests:
memory: "256Mi"
config:
auth_enabled: false
chunk_store_config:
max_look_back_period: 0s
memberlist:
abort_if_cluster_join_fails: false
join_members:

- loki-headless:7946
dead_node_reclaim_time: 30s
gossip_to_dead_nodes_time: 15s
left_ingesters_timeout: 30s
bind_addr: ["0.0.0.0"]
bind_port: 7946

ingester:
chunk_block_size: 262144
chunk_idle_period: 3m
chunk_retain_period: 1m
lifecycler:

ring:

kvstore:
store: memberlist
max_transfer_retries: 0
limits_config:
enforce_metric_name: false
reject_old_samples: true
reject_old_samples_max_age: 168h

(continues on next page)

48

Chapter 2. Operation

MetalK8s

(continued from previous page)

schema_config:
configs:
- from: 2018-04-15
index:
period: 168h
prefix: index_
object_store: filesystem

schema: v9
store: boltdb
server:

http_listen_port: 3100
storage_config:

boltdb:
directory: /data/loki/index
filesystem:
directory: /data/loki/chunks
table_manager:

retention_deletes_enabled: true
retention_period: 336h

Ul Default Configuration

MetalK8s Ul simplifies management and monitoring of a MetalK8s cluster from a centralized user interface.

The default configuration values for MetalK8s Ul are specified below:

Defaults for configuration of MetalK8s UI
apiVersion: addons.metalk8s.scality.com/vlalpha2
kind: UIConfig
spec:
auth:
kind: "oIDC"
providerUrl: "/oidc"
redirectUrl: "{{ salt.metalk8s_network.get_control_plane_ingress_endpoint() }}/"
clientId: "metalk8s-ui"
responseType: "id_token"
scopes: "openid profile email groups offline_access audience:server:client_id:oidc-
—auth-client"
title: Metalk8s Platform
basePath: /

See Metalk8s UI Configuration Customization to override these defaults.

2.3. Cluster and Services Configurations 49

MetalK8s

Shell Ul Default Configuration

MetalK8s Shell UI provides a common set of features to MetalK8s UI and any other UI (both control and workload
plane) configured to include the Shell UI component(s). Features exposed include: - user authentication using an OIDC
provider - navigation menu items, displayed according to user groups (retrieved from OIDC)

The default Shell UI configuration values are specified below:

{%- set dex_defaults = salt.slsutil.renderer('salt://metalk8s/addons/dex/config/dex.yaml.
—j2"', saltenv=saltenv) %}
{%- set dex = salt.metalk8s_service_configuration.get_service_conf('metalk8s-auth',
< 'metalk8s-dex-config', dex_defaults) %}
{%- set metalk8s_ui_defaults = salt.slsutil.renderer(
'salt://metalk8s/addons/ui/config/metalk8s-ui-config.yaml.j2', saltenv=saltenv
)
%}

{%- set metalk8s_ui_config = salt.metalk8s_service_configuration.get_service_conf(
'metalk8s-ui', 'metalk8s-ui-config', metalk8s_ui_defaults

)
%}

Defaults for shell UI configuration
apiVersion: addons.metalk8s.scality.com/vlalpha2
kind: ShellUIConfig
spec:
oidc:
providerUrl: "/oidc"
redirectUrl: "{{ salt.metalk8s_network.get_control_plane_ingress_endpoint() }}/{{.
—metalk8s_ui_config.spec.basePath.lstrip('/"') }}"
clientId: "metalk8s-ui"
responseType: "id_token"
scopes: "openid profile email groups offline_access audience:server:client_id:oidc-
—auth-client"
userGroupsMapping:
{%- for user in dex.spec.config.staticPasswords | map(attribute='email') %}
"{{ user }}": [metalk8s:admin]
{%- endfor %}
discoveryUrl: "/shell/deployed-ui-apps.json”
logo:
light: /brand/assets/logo-light.svg
dark: /brand/assets/logo-dark.svg
darkRebrand: /brand/assets/logo-darkRebrand.svg
favicon: /brand/favicon-metalk8s.svg
canChangelLanguage: false
canChangeTheme: false

See MetalKS8s Shell UI Configuration Customization to override these defaults.

50 Chapter 2. Operation

MetalK8s

2.3.2 Service Configurations Customization

Alertmanager Configuration Customization

Default configuration for Alertmanager can be overridden by editing its Cluster and Service ConfigMap
metalk8s-alertmanager-config in namespace metalk8s-monitoring under the key data.config\.yaml:

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmap -n metalk8s-monitoring \
metalk8s-alertmanager-config

The following documentation is not exhaustive and is just here to give some hints on basic usage, for more details or
advanced configuration, see the official Alertmanager documentation.

Adding inhibition rule for an alert

Alert inhibition rules allow making one alert inhibit notifications for some other alerts.

For example, inhibiting alerts with a warning severity when there is the same alert with a critical severity.

apiVersion: vl

kind: ConfigMap

data:
config.yaml: |-

Adding receivers

Receivers allow configuring where the alert notifications are sent.

Here is a simple Slack receiver which makes Alertmanager send all notifications to a specific Slack channel.

apiVersion: v1

kind: ConfigMap

data:
config.yaml: |-

(continues on next page)

2.3. Cluster and Services Configurations 51

https://prometheus.io/docs/alerting/configuration/

MetalK8s

(continued from previous page)

global:

slack_api_url: https://hooks.slack.com/services/ABCDEFGHIJK
route:

receiver: slack-receiver
receivers:

- name: slack-receiver
slack_configs:
- channel: '#<your-channel>'
send_resolved: true

You can find documentation here to activate incoming webhooks for your Slack workspace and retrieve the
slack_api_url value.

Another example, with email receiver.

apiVersion: vl
kind: ConfigMap
data:
config.yaml: |-
apiVersion: addons.metalk8s.scality.com
kind: AlertmanagerConfig
spec:
notification:
config:
route:
receiver: email-receiver
receivers:
- name: email-receiver
email_configs:

- to: <your-address>@<your-domain.tld>
from: alertmanager@<your-domain.tld>
smarthost: <smtp.your-domain.tld>:587
auth_username: alertmanager@<your-domain.tld>
auth_identity: alertmanager@<your-domain.tld>
auth_password: <password>
send_resolved: true

There are more receivers available (PagerDuty, OpsGenie, HipChat, ...).

Applying configuration

Any changes made to metalk8s-alertmanager-config ConfigMap must then be applied with Salt.

root@ootstrap $ kubectl exec --kubeconfig /etc/kubernetes/admin.conf \
-n kube-system -c salt-master salt-master-bootstrap -- \
salt-run state.sls \
metalk8s.addons.prometheus-operator.deployed \
saltenv=metalk8s-2.11.6

52 Chapter 2. Operation

https://slack.com/intl/en-fr/help/articles/115005265063-Incoming-Webhooks-for-Slack

MetalK8s

Grafana Configuration Customization

Add Extra Dashboard

apiVersion: vl
kind: ConfigMap
metadata:
labels:
grafana_dashboard: '1’
name: <grafana-dashboard-name>
namespace: metalk8s-monitoring
data:
<dashboard-filename>. json: |-

Note: The ConfigMap must be deployed in metalkSs-monitoring namespace and the grafana_dashboard: ‘1’ label in
the example above is mandatory for the dashboard to be taken into account.

Then this manifest must be applied.

root@bootstrap $ kubectl --kubeconfig=/etc/kubernetes/admin.conf \
apply -f <path-to-the-manifest>

Prometheus Configuration Customization

Default configuration for Prometheus can be overridden by editing its Cluster and Service ConfigMap
metalk8s-prometheus-config in namespace metalk8s-monitoring under the key data.config.yaml:

root@ootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmap -n metalk8s-monitoring \
metalk8s-prometheus-config

Change Retention Time

Prometheus is deployed with a retention based on time (10d). This value can be overriden:

apiVersion: v1
kind: ConfigMap
metadata:
name: metalk8s-prometheus-config
namespace: metalk8s-monitoring
data:
config.yaml: |-

(continues on next page)

2.3. Cluster and Services Configurations 53

MetalK8s

(continued from previous page)

Note: Supported time units are y, w, d, h, m s and ms (years, weeks, days, hours, minutes, seconds and milliseconds).

Then apply the configuration.

Set Retention Size

Prometheus is deployed with the size-based retention disabled. This functionality can be actived:

apiVersion: v1
kind: ConfigMap
metadata:
name: metalk8s-prometheus-config
namespace: metalk8s-monitoring
data:
config.yaml: |-

Note: Supported size units are B, KB, MB, GB, TB and PB.

Warning: Prometheus does not take the write-ahead log (WAL) size in account to calculate the retention, so the
actual disk consumption can be greater than retention_size. You should at least add a 10% margin to be safe. (i.e.:
set retention_size to 9GB for a 10GB volume)

Both size and time based retentions can be activated at the same time.

Then apply the configuration.

Set Kubelet metrics scrape tiemout

In some cases (e.g. when using a lot of sparse loop devices), the kubelet metrics endpoint can be very slow to answer
and the Prometheus’ default 10s scrape timeout may not be sufficient. To avoid timeouts and thus losing metrics, you
can customize the scrape timeout as follows:

apiVersion: vl
kind: ConfigMap
metadata:
name: metalk8s-prometheus-config

(continues on next page)

54 Chapter 2. Operation

MetalK8s

(continued from previous page)

namespace: metalk8s-monitoring
data:
config.yaml: |-

Then apply the configuration.

Predefined Alert Rules Customization

A subset of the predefined Alert rules can be customized, the exhaustive list can be found /ere.

For example, to change the threshold for the disk space alert (% of free space left) from 5% to 10%, simply do:

apiVersion: vl
kind: ConfigMap
metadata:
name: metalk8s-prometheus-config
namespace: metalk8s-monitoring
data:
config.yaml: |-

Then apply the configuration.

Enable Prometheus Admin API

For security reasons, Prometheus Admin API is disabled by default. It can be enabled with the following:

apiVersion: vl
kind: ConfigMap
metadata:
name: metalk8s-prometheus-config
namespace: metalk8s-monitoring
data:
config.yaml: |-

(continues on next page)

2.3. Cluster and Services Configurations 55

MetalK8s

(continued from previous page)

Then apply the configuration.

Adding New Rules

Alerting rules allow defining alert conditions based on PromQL expressions and to send notifications about these alerts

to Alertmanager.

In order to add Alert rules, a new PrometheusRule manifest must be created.

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
labels:
metalk8s.scality.com/monitor: ''
name: <prometheus-rule-name>
namespace: <namespace-name>
spec:
groups:
- name: <rules-group-name>
rules:
- alert: <alert-rule-name>
annotations:
description: "some description"
summary: "alert summary"
expr: <PromQL-expression>
for: 1h
labels:
severity: warning

Note: The metalkSs.scality.com/monitor: *’ label in the example above is mandatory for Prometheus to take the new

rules into account.

Then this manifest must be applied.

root@bootstrap $§ kubectl --kubeconfig=/etc/kubernetes/admin.conf \
apply -f <path-to-the-manifest>

For more details on Alert Rules, see the official Prometheus alerting rules documentation

56

Chapter 2. Operation

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/

MetalK8s

Adding New Service to Monitor

To tell monitor to scrape metrics for a Pod, a new ServiceMonitor manifest must be created.

apiVersion: monitoring.coreos.com/vl
kind: ServiceMonitor
metadata:
labels:
metalk8s.scality.com/monitor: '’
name: <service-monitor-name>
namespace: <namespace-name>
spec:
endpoints:
- port: <port-name>
namespaceSelector:
matchNames:
- <namespace-name>
selector:
matchLabels:
app.kubernetes.io/name: <app-name>

Note: The metalkS8s.scality.com/monitor: *’ label in the example above is mandatory for Prometheus to take the new
service to monitor into account.

Then this manifest must be applied.

root@bootstrap $§ kubectl --kubeconfig=/etc/kubernetes/admin.conf \
apply -f <path-to-the-manifest>

For details and an example, see the Prometheus Operator documentation.

Applying configuration

Any changes made to metalk8s-prometheus-config ConfigMap must then be applied with Salt.

root@bootstrap $ kubectl exec --kubeconfig /etc/kubernetes/admin.conf \
-n kube-system -c salt-master salt-master-bootstrap -- \
salt-run state.sls \
metalk8s.addons.prometheus-operator.deployed \
saltenv=metalk8s-2.11.6

2.3. Cluster and Services Configurations 57

https://github.com/prometheus-operator/prometheus-operator/blob/master/Documentation/user-guides/getting-started.md#related-resources

MetalK8s

Dex Configuration Customization

Enable or Disable the Static User Store

Dex includes a local store of users and their passwords, which is enabled by default.

Important: To continue using MetalK8s OIDC (especially for MetalK8s Ul and Grafana) in case of the loss of external
identity providers, it is advised to keep the static user store enabled.

To disable (resp. enable) it, perform the following steps:

1. Set the enablePasswordDB configuration flag to false (resp. true):

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmap metalk8s-dex-config -n metalk8s-auth

#[...]
data:
config.yaml: |-

2. Apply your changes:

root@bootstrap $ kubectl exec -n kube-system -c salt-master \
--kubeconfig /etc/kubernetes/admin.conf \
salt-master-bootstrap -- salt-run state.sls \
metalk8s.addons.dex.deployed saltenv=metalk8s-2.11.6

Note: Dex enables other operations on static users, such as Adding a Static User, and Changing a Static User Password.

Additional Configurations

All configuration options exposed by Dex can be changed by following a similar procedure to the ones documented
above. Refer to Dex documentation for an exhaustive explanation of what is supported.

To define (or override) any configuration option, follow these steps:

1. Add (or change) the corresponding field under the spec.config key of the metalkSs-auth/metalk8s-dex-config
ConfigMap:

root@ootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmap metalk8s-dex-config -n metalk8s-auth

For example, registering a client application with Dex can be done by adding a new entry under staticClients:

58 Chapter 2. Operation

https://github.com/dexidp/dex/tree/v2.23.0/Documentation

MetalK8s

#[...]
data:
config.yaml: |-

2. Apply your changes by running:

root@bootstrap $ kubectl exec -n kube-system -c salt-master \
--kubeconfig /etc/kubernetes/admin.conf \
salt-master-bootstrap -- salt-run state.sls \
metalk8s.addons.dex.deployed saltenv=metalk8s-2.11.6

Loki Configuration Customization

Default configuration for Loki can be overridden by editing its Cluster and Service ConfigMap
metalk8s-loki-config in namespace metalk8s-logging under the key data.config.yaml:

root@ootstrap § kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmap -n metalk8s-logging \
metalk8s-loki-config

The following documentation is not exhaustive and is just here to give some hints on basic usage, for more details or
advanced configuration, see the official Loki documentation.

Add Loki memory limit

Loki consumes some memory to store chunks before they get written to disks. Its memory consumption really depends
on the usage, which is why we do not set any limit by default.

However, if Loki is unable to write to the disk for any reason, it will continue keeping logs in memory, leading to
large memory consumption until the issue is resolved. To prevent Loki from taking too much from the host, potentially
leading to starvation, you can define a resource limit on the Pod.

For example, to set the limit to 4 GiB, the ConfigMap must be edited as follows:

apiVersion: vl

kind: ConfigMap

data:
config.yaml: |-

(continues on next page)

2.3. Cluster and Services Configurations 59

https://grafana.com/docs/loki/latest/configuration/

MetalK8s

(continued from previous page)

Changing the logs retention period

Retention period is the time the logs will be stored and available before getting purged.

For example, to set the retention period to 1 week, the ConfigMap must be edited as follows:

apiVersion: vl

kind: ConfigMap

data:
config.yaml: |-

Note: Due to internal implementation, retention_period must be a multiple of 24h in order to get the expected
behavior

Metalk8s Ul Configuration Customization

Default configuration for MetalK8s UI can be overridden by editing its Cluster and Service ConfigMap
metalk8s-ui-config in namespace metalk8s-ui under the key data.config\.yaml:

root@ootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmap -n metalk8s-ui \
metalk8s-ui-config

Changing the MetalK8s Ul Ingress Path

In order to expose another UI at the root path of the control plane, in place of MetalK8s UI, you need to change the
Ingress path from which MetalK8s Ul is served.

For example, to serve MetalK8s UI at /platform instead of /, follow these steps:

1. Change the value of spec.basePath in the ConfigMap:

apiVersion: v1

kind: ConfigMap

data:
config.yaml: |-

(continues on next page)

60 Chapter 2. Operation

MetalK8s

(continued from previous page)

1. Apply your changes by running:

root@ootstrap $ kubectl exec -n kube-system -c salt-master \
--kubeconfig /etc/kubernetes/admin.conf \
salt-master-bootstrap -- salt-run state.sls \
metalk8s.addons.ui.deployed saltenv=metalk8s-2.11.6

MetalK8s Shell Ul Configuration Customization

Default configuration for MetalK8s Shell UI can be overridden by editing its Cluster and Service ConfigMap
metalk8s-shell-ui-config in namespace metalk8s-ui under the key data.config\.yaml.

Changing Ul OIDC Configuration

In order to adapt the OIDC configuration (e.g. the provider URL or the client ID) used by the UI shareable navigation
bar (called Shell UI), you need to modify its ConfigMap.

For example, in order to replace the default client ID with “ui”, follow these steps:

1. Edit the ConfigMap:

root@ootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmap -n metalk8s-ui \
metalk8s-shell-ui-config

1. Add the following entry:

apiVersion: v1

kind: ConfigMap

data:
config.yaml: |-

1. Apply your changes by running:

root@ootstrap $ kubectl exec -n kube-system -c salt-master \
--kubeconfig /etc/kubernetes/admin.conf \
salt-master-bootstrap -- salt-run state.sls \
metalk8s.addons.ui.deployed saltenv=metalk8s-2.11.6

You can similarly edit the requested scopes through the “scopes” attribute or the OIDC provider URL through the
“providerUrl” attribute.

2.3. Cluster and Services Configurations 61

MetalK8s

Changing Ul Menu Entries

To change the Ul navigation menu entries, follow these steps:

1. Edit the ConfigMap:

root@ootstrap $§ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmap -n metalk8s-ui \
metalk8s-shell-ui-config

1. Edit the options field. As an example, we add an entry to the main section (there is also a subLogin section):

apiVersion: vl

kind: ConfigMap

data:
config.yaml: |-

1. Apply your changes by running:

root@ootstrap $ kubectl exec -n kube-system -c salt-master \
--kubeconfig /etc/kubernetes/admin.conf \
salt-master-bootstrap -- salt-run state.sls \
metalk8s.addons.ui.deployed saltenv=metalk8s-2.11.6

Replicas Count Customization

MetalK8s administrators can scale the number of pods for any service mentioned below by changing the number of
replicas which is by default set to a single pod per service.

Service Namespace ConfigMap

Alertmanager | metalk8s-monitoring | metalk8s-alertmanager-config
Grafana metalk8s-grafana-config
Prometheus metalk8s-prometheus-config
Dex metalk8s-auth metalk8s-dex-config

Loki metalk8s-logging metalk8s-loki-config

To change the number of replicas, perform the following operations:

1. From the Bootstrap node, edit the ConfigMap attributed to the service and then modify the replicas entry.

root@ootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmap <ConfigMap> -n <Namespace>

62 Chapter 2. Operation

MetalK8s

Note: For each service, consult the Cluster Services table to obtain the ConfigMap and the Namespace to be
used for the above command.

Make sure to replace <number-of-replicas> field with an integer value (For example 2).

[...]
data:
config.yaml: |-

Save the ConfigMap changes.

From the Bootstrap node, execute the following command which connects to the Salt master container and applies
salt-states to propagate the new changes down to the underlying services.

root@bootstrap $ kubectl exec --kubeconfig /etc/kubernetes/admin.conf \
-n kube-system -c salt-master salt-master-bootstrap \
-- salt-run state.sls metalk8s.deployed \
saltenv=metalk8s-2.11.6

Note: Scaling the number of pods for services like Prometheus, Alertmanager and Loki requires provision-
ing extra persistent volumes for these pods to startup normally. Refer to this procedure for more information.

2.4 Volume Management

This section covers MetalK8s volume management operations, from creating a StorageClass, to creating and deleting
a volume using the CLI or the UI. Volumes enable the use of persistent data storage within a MetalK8s Cluster.

2.4.1 StorageClass Creation

MetalK8s uses StorageClass objects to describe how volumes are formatted and mounted. This topic explains how to
use the CLI to create a StorageClass.

1.

Create a StorageClass manifest.

You can define a new StorageClass using the following template:

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: <storageclass_name>
provisioner: kubernetes.io/no-provisioner
reclaimPolicy: Retain
volumeBindingMode: WaitForFirstConsumer
mountOptions:
- rw
parameters:

(continues on next page)

24,

Volume Management 63

MetalK8s

(continued from previous page)

fsType: <filesystem_type>
mkfsOptions: <mkfs_options>

Set the following fields:

* mountOptions: specifies how the volume should be mounted. For example: rw (read/write), or ro (read-
only).

» fsType: specifies the filesystem to use on the volume. xfs and ext4 are the only currently supported file
system types.

* mkfsOptions: specifies how the volume should be formatted. This field is optional (note that the options
are passed as a JSON-encoded string). For example '["-m", "0"]' could be used as mkfsOptions for
an ext4 volume.

» Set volumeBindingMode as WaitForFirstConsumer in order to delay the binding and provisioning of
a Pod until a Pod using the PersistentVolumeClaim is created.

2. Create the StorageClass.

root@ootstrap $ kubectl apply -f storageclass.yml

3. Check that the StorageClass has been created.

root@ootstrap $ kubectl get storageclass <storageclass_name>
NAME PROVISIONER AGE
<storageclass_name> kubernetes.io/no-provisioner 2s

2.4.2 Volume Management Using the CLI

This topic describes how to create and delete a MetalK8s Volume using the CLI. Volume objects enable a declarative
provisioning of persistent storage, to use in Kubernetes workloads (through PersistentVolumes).

Requirements

 StorageClass objects must be registered in your cluster to create Volumes. For more information refer to Stor-
ageClass Creation.

Creating a Volume

1. Create a Volume manifest using one of the following templates:

rawBlockDevice Volumes

apiVersion: storage.metalk8s.scality.com/vlalphal
kind: Volume
metadata:
name: <volume_name>
spec:
nodeName: <node_name>
storageClassName: <storageclass_name>

(continues on next page)

64 Chapter 2. Operation

MetalK8s

(continued from previous page)

mode: "Filesystem"
rawBlockDevice:
devicePath: <devicePath>

Set the following fields:
* name: the name of your volume, must be unique.
* nodeName: the name of the node where the volume will be located.
« storageClassName: the StorageClass to use.

* mode: describes how the volume is intented to be consumed, either Block or Filesystem (default to Filesys-
tem if not specified).

 devicePath: path to the block device (for example: /dev/sdal).

IvmLogicalVolume Volumes

apiVersion: storage.metalk8s.scality.com/vlalphal
kind: Volume
metadata:
name: <volume_name>
spec:
nodeName: <node_name>
storageClassName: <storageclass_name>
mode: "Filesystem"
lvmLogicalVolume:
vgName: <vg_name>
size: 10Gi

Set the following fields:
* name: the name of your volume, must be unique.
* nodeName: the name of the node where the volume will be located.
« storageClassName: the StorageClass to use.

* mode: describes how the volume is intented to be consumed, either Block or Filesystem (default to Filesys-
tem if not specified).

e vgName: LVM VolumeGroup name to create the LogicalVolume the VolumeGroup must exists on the
Node.

* size: Size of the LVM Logical Volume to create.

2. Create the Volume.

root@bootstrap $ kubectl apply -f volume.yml

3. Check that the Volume has been created.

root@ootstrap $ kubectl get volume <volume_name>
NAME NODE STORAGECLASS
<volume_name> bootstrap metalk8s-demo-storageclass

2.4. Volume Management 65

MetalK8s

Deleting a Volume

Note: A Volume object can only be deleted if there is no backing storage, or if the volume is not in use. Otherwise,
the volume will be marked for deletion and remain available until one of the conditions is met.

1. Delete a Volume.

root@bootstrap $ kubectl delete volume <volume_name>
volume.storage.metalk8s.scality.com <volume_name> deleted

2. Check that the Volume has been deleted.

Note: The command below returns a list of all volumes. The deleted volume entry should not be found in the
list.

root@bootstrap $ kubectl get volume

2.4.3 Volume Management Using the Ul

This topic describes how to create and delete a MetalK8s Volume using the MetalK8s UI.

Requirements

 StorageClass objects must be registered in your cluster to create Volumes. For more information refer to Stor-
ageClass Creation.

* Access the MetalK8s UL Refer to this procedure.

66 Chapter 2. Operation

MetalK8s

Creating a Volume

1. Click Nodes on the sidebar to access the node list.

»3 SCALITY METALKS8S PLATFORM

£ Platform >

Alerts © Create Node

Nodes Health Name Status

Volumes °® bootstrap

bootstrap / etcd / master
CP:10.200.6.104 WP: 10.200.6.104

Environments

master-0
CP: 10.200.6.12 WP: 10.200.6.12

etcd / infra / master

master-1
CP:10.200.4.164 WP: 10.200.4.164

etcd / infra / master

2. On the node list, select the node you want to create a volume on.

3. Go to the Volumes tab and click + Create Volume.
»5 SCALITY METALKS8S PLATFORM @& 2] & admin

< Platform >

Overview Alerts 0 Metrics Volumes Details
Alerts © Create Node

Nodes Health Name Status © Create Volume

Health» Name Size Status Latenc
Volumes o lmeEED bootstrap / etcd / master v

CP:10.200.6

Environments No volumes found

etcd / infra / master

4. Fill in the respective fields, and click Create.
* Name: Denotes the volume name.
* Labels: A set of key/value pairs used by PersistentVolumeClaims to select the right PersistentVolumes.
» Storage Class: Refers to StorageClass Creation.
e Type: MetalK8s currently only supports RawBlockDevice and SparseLoopDevice.

* Device path: Refers to the path of an existing storage device.

2.4. Volume Management 67

MetalK8s

Create New Volume

Name volumeprometheus
Node bootstrap

Labels

Storage Class metalk8s

Type RawBlockDevice
Device Path /dev

Create multiple volumes?

5. Click Volumes on the sidebar to access the volume list. The new volume created appears in the list.

;g SCALITY METALKSS PLATFORM
4 Platform >
Alerts © Create Volume

Nodes Health * Name Node Size Status Latency

Volumes volumeprometheus bootstrap

Environments worker-O-burry-1 worker-0

master-0-alertman
master-0
ager

master-0-loki master-0

master-0O-promethe
us

master-0

68 Chapter 2. Operation

MetalK8s

Deleting a Volume

1. Click Volumes on the sidebar to access the volume list, and select the volume you want to delete.

2. Go to the Overview tab, click Delete Volume.
53 SCALITY METALK8S PLATFORM ® © & admin
< Platform >

Overview Alerts Metrics Details
Alerts © Create Volume

volumeprometheus W Delete Volume

Nodes Health » Name Node Size Status Latency

-
Volumes volumeprometheus bootstrap = d = Node
P . Size Unknown
Environments
Status Failed

Storage Class metalk8s

Creation Time Mar 01, 2021 5:18:39
PM

Type rawBlockDevice
Used By Not used
Backend Disk /dev

Labels

3. Confirm the volume deletion request by clicking Delete.

Delete Volume b ¢

Deleting this volume will permanently delete the data it contains.
Do you want to delete volumeprometheus?

Cancel Delete

2.5 Cluster Upgrade

MetalKS8s clusters are upgraded using the utility scripts packaged with every new release. This topic describes upgrad-
ing MetalK8s and all components included in the stack.

2.5.1 Supported Versions

Note: MetalK8s supports upgrade of at most one minor version at a time. For example:
* from 2.4.0t0 2.4.4,
e from 2.4.0 to 2.5.1.

Refer to the release notes for more information.

2.5. Cluster Upgrade 69

https://github.com/scality/metalk8s/releases

MetalK8s

2.5.2 Prerequisites

ISO Preparation

Provision a new MetalK8s ISO by running the utility script shipped with the current installation.

/srv/scality/metalk8s-X.X.X/iso-manager.sh -a <path_to_iso>

Pre-Checks

Use the --dry-run option to validate your environment for upgrade:

/srv/scality/metalk8s-X.Y.Z/upgrade.sh --dry-run --verbose

This will simulate the upgrade pre-checks and provide an overview of the changes to be carried out in your MetalK8s
cluster.

Important: The version prefix metalk8s-X.Y.Z must be the new MetalK8s version you want to upgrade to.

2.5.3 Upgrade

1. Run the utility script shipped with the new version you want to upgrade to.

2. From the Bootstrap node, launch the upgrade.

/srv/scality/metalk8s-X.Y.Z/upgrade.sh

Important: The version prefix metalk8s-X.Y.Z must be the new MetalK8s version you want to upgrade to.

2.6 Cluster Downgrade

MetalKS8s clusters are downgraded using the utility scripts that are packaged with your current installation. This topic
describes downgrading MetalK8s and all components included in the stack.

2.6.1 Supported Versions

Note: MetalK8s supports downgrade of at most one minor version at a time. For example:
e from2.4.4t02.4.1,
e from 2.5.1 to 2.4.0.

Refer to the release notes for more information.

70 Chapter 2. Operation

https://github.com/scality/metalk8s/releases

MetalK8s

Warning: Version only supports downgrade of patch version.

2.6.2 Prerequisites

ISO Preparation

Provision a new MetalK8s ISO by running the utility script shipped with the current installation.

/srv/scality/metalk8s-X.X.X/iso-manager.sh -a <path_to_iso>

Pre-Checks

You can test if your environment will successfully downgrade with the following command.

/srv/scality/metalk8s-X.Y.Z/downgrade.sh --destination-version \
<destination_version> --dry-run --verbose

This will simulate the downgrade pre-checks and provide an overview of the changes to be carried out in your MetalK8s
cluster.

Important: The version prefix metalk8s-X.Y.Z must be the current installed MetalK8s version.

2.6.3 Downgrade

1. Run the utility script shipped with the current installation providing it with the destination version.

2. From the Bootstrap node, launch the downgrade.

/srv/scality/metalk8s-X.Y.Z/downgrade.sh --destination-version <version>

Important: The version prefix metalk8s-X.Y.Z must be the current installed MetalK8s version.

2.7 Disaster Recovery

This section offers a series of recovery operations such as the backup and restoration of the MetalK8s bootstrap node.

2.7. Disaster Recovery 71

MetalK8s

2.7.1 Bootstrap Node Backup and Restoration

This topic describes how to back up a MetalK8s bootstrap node manually, and how to restore a bootstrap node from
such a backup.

Note: A backup is generated automatically:
* at the end of the bootstrap,
* at the beginning of an upgrade or downgrade,
* at the end of an upgrade or downgrade,

* at the end of a bootstrap restoration.

Backing Up a Bootstrap Node

To create a new backup file, run the following command:
/srv/scality/metalk8s-2.11.6/backup.sh

Backup archives are stored in /var/lib/metalk8s/backups on all master nodes.

Restoring a Bootstrap Node

Warning: You must have a highly available control plane with at least three members in the etcd cluster (including
the failed bootstrap node), to use the restore script.

Note: To restore a bootstrap node you need a backup archive and MetalK8s ISOs. All the ISOs referenced in the
bootstrap configuration file (located in /etc/metalk8s/bootstrap.yaml) must be present.

1. Unregister the unreachable etcd member from the cluster by running the following commands from a working
node with the etcd role:

1. Get etcd container id.

CONT_ID=$(crictl ps -q --label io.kubernetes.container.name=etcd --state.
—Running)

2. List all etcd members to get the ID of the etcd member that needs to be removed.

crictl exec -it "$CONT_ID" \
etcdctl --endpoints https://localhost:2379 \
--cacert /etc/kubernetes/pki/etcd/ca.crt \
--key /etc/kubernetes/pki/etcd/server.key \
--cert /etc/kubernetes/pki/etcd/server.crt \
member list

3. Remove the etcd member (replace <etcd_id> in the command).

72 Chapter 2. Operation

MetalK8s

crictl exec -it "$CONT_ID" \
etcdctl --endpoints https://localhost:2379 \
--cacert /etc/kubernetes/pki/etcd/ca.crt \
--key /etc/kubernetes/pki/etcd/server.key \
--cert /etc/kubernetes/pki/etcd/server.crt \
member remove <etcd_id>

2. Because multiple bootstrap nodes are not supported, remove the old bootstrap node before performing the restora-
tion by running the following commands from a working node with a master role:

1. List all nodes to get the node name of the old bootstrap node that needs to be removed.

kubectl get node --selector="node-role.kubernetes.io/bootstrap"” \
--kubeconfig=/etc/kubernetes/admin.conf

2. Remove the old bootstrap node (replace <node_name> in the command).

kubectl delete node <node_name> --kubeconfig=/etc/kubernetes/admin.conf

3. Mount the ISO.

4. Restore the bootstrap node. Replace <backup_archive> with the path to the backup archive you want to use,
and <node_ip> with a control plane IP of one control plane node.

/srv/scality/metalk8s-|version|/restore.sh --backup-file <backup_archive> --
—,apiserver-node-ip <node_ip>

2.8 Solution Deployment

To

deploy a solution in a MetalK8s cluster, a utility script is provided. This procedure describes how to deploy a

solution using this tool, which is located at the root of the MetalK8s archive:

/srv/scality/metalk8s-2.11.6/solutions.sh

2.8.1 Preparation

1. Import a solution in the cluster, and make the container images available through the cluster registry.

./solutions.sh import --archive </path/to/solution.iso>

2. Activate a solution version.

./solutions.sh activate --name <solution-name> --version <solution-version>

Only one version of a solution can be active at a time. An active solution version provides cluster-wide resources,
such as CRDs, to all other versions of this solution.

2.8.

Solution Deployment 73

MetalK8s

2.8.2 Deployment

1. Solutions are meant to be deployed in isolated namespaces called environments.

To create an environment, run:

./solutions.sh create-env --name <environment-name>

2. Solutions are packaged with an Operator to provide all required domain-specific logic. To deploy a solution
operator in an environment, run:

./solutions.sh add-solution --name <environment-name> \
--solution <solution-name> --version <solution-version>

2.8.3 Configuration

The solution operator is now deployed. To finalize the deployment and configuration of a solution, refer to its docu-
mentation.

2.

9 Changing the hostname of a MetalK8s node

1. On the node, change the hostname:

$ hostnamectl set-hostname <New hostname>
$ systemctl restart systemd-hostnamed

2. Check that the change is taken into account.

$ hostnamectl status

Static hostname: <New hostname>

Pretty hostname: <New hostname>
Icon name: computer-vm
Chassis: vm

Machine ID: 5003025f93cla84914ea5ae66519c100
Boot ID: £28d5c64f06c48a3a775e24c4£03d00c
Virtualization: kvm

Oerating System: CentOS Linux 7 (Core)
CPE OS Name: cpe:/o:centos:centos:7

Kernel: Linux 3.10.0-957.12.2.el7.x86_64

Architecture: x86-64

3. On the bootstrap node, check the hostname edition incurred a change of status on the bootstrap. The edited node
must be in a NotReady status.

$ kubectl get <node_name>
<node_name> NotReady etcd,master 19h vl.11.7

4. Change the name of the node in the yaml file used to create it. Refer to Creating a Manifest for more information.

apiVersion: vl
kind: Node
metadata:

74

Chapter 2. Operation

MetalK8s

name: <New_node_name>

annotations:
metalk8s.scality.com/ssh-key-path: /etc/metalk8s/pki/salt-bootstrap
metalk8s.scality.com/ssh-host: <node control-plane IP>
metalk8s.scality.com/ssh-sudo: 'false'

labels:
metalk8s.scality.com/version: '2.11.6"'
<role labels>

spec:
taints: <taints>

Then apply the configuration:

$ kubectl apply -f <path to edited manifest>

5. Delete the old node (here <node_name>):

$ kubectl delete node <node_name>

6. Open a terminal into the Salr Master container:

$ kubectl -it exec salt-master-<bootstrap_node_name> -n kube-system -c salt-master.
—bash

7. Delete the now obsolete Salt Minion key for the changed Node:

$ salt-key -d <node_name>

8. Re-run the deployment for the edited Node:

$ salt-run state.orchestrate metalk8s.orchestrate.deploy_node saltenv=metalk8s-2.
—11.6 pillar="{"orchestrate": {'node_name": "<new-node-name>"}}"'

Summary for bootstrap_master

Succeeded: 11 (changed=9)
Failed: 0

Total states run: 11
Total run time: 132.435 s

9. On the edited node, restart the Kubelet service:

$ systemctl restart kubelet

2.9. Changing the hosthame of a MetalK8s node 75

MetalK8s

2.10 Changing the Control Plane Ingress IP

This procedure describes how to change the Control Plane Ingress IP, and to enable (or disable) MetalLB management
of this IP.

Note: Disabling MetalLLB using this procedure does not remove MetalLLB, it simply disables its use for managing the
LoadBalancer Service for MetalK8s Control Plane Ingress.

. On the Bootstrap node, update the ip field from networks.controlPlane.ingress in the Bootstrap config-

uration file. (refer to Bootstrap Configuration)

. Refresh the pillar.

$ salt-call saltutil.refresh_pillar wait=True

. Check that the change is taken into account.

$ salt-call metalk8s_network.get_control_plane_ingress_ip
local:

<my-new-ip>
$ salt-call pillar.get networks:control_plane

local:
cidr:
- <control-plane-cidr>
ingress:
ip:
<my-new-ip>
metallB:

enabled: <true | false>

. On the Bootstrap node, reconfigure apiServer:

$ salt-call state.sls \
metalk8s.kubernetes.apiserver \
saltenv=metalk8s-2.11.6

. Reconfigure Control Plane components:

$ kubectl exec -n kube-system -c salt-master \
--kubeconfig=/etc/kubernetes/admin.conf \
$ (kubectl --kubeconfig=/etc/kubernetes/admin.conf get pod \
-1 "app.kubernetes.io/name=salt-master" \
--namespace=kube-system -o jsonpath='{.items[0].metadata.name}') \
-- salt-run state.orchestrate \
metalk8s.orchestrate.update-control-plane-ingress-ip \
saltenv=metalk8s-2.11.6

. You can access the MetalK8s GUI using this new IP.

76

Chapter 2. Operation

MetalK8s

2.11 Using the metalk8s-utils Image

A MetalK8s installation comes with a container image called metalk8s-utils in the embedded registry. This image
contains several tools an operator can use to analyze a cluster environment or troubleshoot various system issues.

The image can be used to create a Pod on a node, after which a shell inside the container can be created to run the
various utilities. Depending on the use-case, the Pod could be created using the host network namespace, the host PID
namespace, elevated privileges, mounting host directories as volumes, etc.

See the metalk8s-utils Dockerfile for a list of all packages installed in the image.

2.11.1 A Simple Shell

To run a metalk8s-utils container as a simple shell, execute the following command:

kubectl run shell \
--image=metalk8s-registry-from-config.invalid/metalk8s-2.11.6/metalk8s-utils:2.11.6 \
--restart=Never \
--attach \
--stdin \
--tty \
--rm

This will create a Pod called shell with a container running the metalk8s-utils image, and present you with a shell
in this container.

Note: This procedure expects no other shell Pod to be running. Adjust the name accordingly, or use a dedicated
namespace if conflicts occur.

2.11.2 A Long-Running Container

In the example above, the lifetime of the container is tied to the invocation of kubectl run. In some situations it’s
more efficient to keep such container running and attach to it (and detach from it) dynamically.

¢ Create the Pod:

kubectl run shell \
--image=metalk8s-registry-from-config.invalid/metalk8s-2.11.6/metalk8s-utils:2.11.6 \
--restart=Never \
--command -- sleep infinity

This creates the shell Pod including a metalk8s-utils container running sleep infinity, effectivelly causing
the Pod to remain alive until deleted.

¢ Get a shell in the container:

kubectl exec -ti shell -- bash

Note: The screen and tmux utilities are installed in the image for terminal multiplexing.

¢ Exit the shell to detach

* Remove the Pod once the container is no longer needed:

2.11. Using the metalk8s-utils Image 77

MetalK8s

kubectl delete pod shell

2.11.3 A Shell on a Particular Node

To pin the Pod in which the metalk8s-utils container is launched to a particular node, add the following options to
a suitable kubectl run invocation:

--overrides="'{ "apiVersion": "v1", "spec": { "nodeName": "NODE_NAME" } }'

Note: In the above, replace NODE_NAME by the desired node name.

2.11.4 A Shell in the Host Network Namespace

Torun ametalk8s-utils container in the host network namespace, e.g., to use utilities such as ip, iperf or tcpdump
as if they’re executed on the host, add the following options to a suitable kubectl run invocation:

--overrides="'{ "apiVersion": "v1", "spec": { "hostNetwork": true } }'

Note: If multiple overrides need to be combined, the JSON objects must be merged.

2.12 Registry HA

To be able to run fully offline, MetalK8s comes with its own registry serving all necessary images used by its containers.
This registry container sits on the Bootstrap node.

With a highly available registry, container images are served by multiple nodes, which means the Bootstrap node can
be lost without impacting the cluster. It allows pods to be scheduled, even if the needed images are not cached locally.

Note: This procedure only talk about registry HA as Bootstrap HA is not supported for the moment, so it’s only a part
of the Bootstrap functionnaly. Check this ticket for more informations https://github.com/scality/metalk8s/issues/2002

2.12.1 Prepare the node
To configure a node to host a registry, a repository pod must be scheduled on it. This node must be part of the
MetalKS8s cluster and no specific roles or taints are needed.

All ISOs listed in the archives section of /etc/metalk8s/bootstrap.yaml and /etc/metalk8s/solutions.
yaml must be copied from the Bootstrap node to the target node at exactly the same location.

78 Chapter 2. Operation

https://github.com/scality/metalk8s/issues/2002

MetalK8s

2.12.2 Deploy the registry

Connect to the node where you want to deploy the registry and run the following salt states
* Prepare all the MetalK8s ISOs

root@node-1 $ salt-call state.sls \
metalk8s.archives.mounted \
saltenv=metalk8s-2.11.6

* If you have some solutions, prepare the solutions ISOs

root@node-1 $ salt-call state.sls \
metalk8s.solutions.available \
saltenv=metalk8s-2.11.6

* Deploy the registry container

root@node-1 $ salt-call state.sls \
metalk8s.repo.installed \
saltenv=metalk8s-2.11.6

2.12.3 Reconfigure the container engines

Containerd must be reconfigured to add the freshly deployed registry to its endpoints and so it can still pull images in
case the Bootstrap node’s one is down.

From the Bootstrap node, run (replace <bootstrap_node_name> with the actual Bootstrap node name):

root@ootstrap $ kubectl exec -n kube-system -c salt-master \
--kubeconfig=/etc/kubernetes/admin.conf \
salt-master-<bootstrap_node_name> -- salt '*' state.sls \
metalk8s.container-engine saltenv=metalk8s-2.11.6

2.13 Listening Processes

In MetalK8s context several processes are deployed and they need to communicate with each other, sometimes locally,
sometimes between machines in the cluster, or with the end user.

Depending on their roles, nodes must have several addresses available for MetalK8s processes to bind.

2.13.1 Listening Processes on Bootstrap Nodes

Address Description
control_plane_ip:4505 | Salt master publisher
control_plane_ip:4506 | Salt master request server
control_plane_ip:4507 | Salt API
control_plane_ip:8080 | MetalK8s repository

2.13. Listening Processes 79

mailto:root@node\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{}1
mailto:root@node\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{}1
mailto:root@node\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{}1
mailto:root@bootstrap

MetalK8s

2.13.2 Listening Processes on Master Nodes

Address

Description

control_plane_ip:6443

Kubernetes apiserver

127.0.0.1:7080

Apiserver proxy health check

127.0.0.1:7443

Apiserver proxy

control_plane_ip:7472

Control plane MetalLB speaker metrics (only if MetalLB enabled)

control_plane_ip:7946

Control plane MetalLB speaker (only if MetalLB enabled)

ingress_control_plane_ip:8443

Control plane nginx ingress

control_plane_ip:10257

Kubernetes controller manager

control_plane_ip:10259

Kubernetes scheduler

2.13.3 Listening Processes on Etcd Nodes

Address Description
127.0.0.1:2379 Etcd client
control_plane_ip:2379 | Etcd client
control_plane_ip:2380 | Etcd peer

127.0.0.1:2381

Etcd metrics

control_plane_ip:2381

Etcd metrics

2.13.4 Listening Processes on All Nodes

Address Description

127.0.0.1:9099

Calico node

control_plane_ip:9100 Node exporter

127.0.0.1:10248

Kubelet health check

control_plane_ip:10249

Kubernetes proxy metrics

control_plane_ip:10250

Kubelet

control_plane_ip:10256

Kubernetes proxy health check

2.14 Troubleshooting

This section covers some of the common issues users face during and after a MetalK8s operation.

If your issue is not presented here, create a GitHub issue or open a new GitHub discussion.

80

. Operation

https://github.com/scality/metalk8s/issues/new/choose
https://github.com/scality/metalk8s/discussions/new

MetalK8s

2.14.1 Account Administration Errors

Forgot the MetalK8s GUI Password

If you forget the MetalK8s GUI user name or password, refer to Changing Static User Password to reset or change your
credentials.

2.14.2 General Kubernetes Resource Errors

Pod Status Shows CrashLoopBackOff

If some pods are in a persistent CrashLoopBackOf state, it means that the pods are crashing because they start up
then immediately exit. Kubernetes restarts them and the cycle continues. To find potential causes of this error, review
the output returned from the following command:

[root@bootstrap vagrant]# kubectl -n kube-system describe pods <pod name>

Name: <pod name>
Namespace: kube-system
Priority: 2000000000

Priority Class Name: system-cluster-critical

Persistent Volume Claim (PVC) Stuck in Pending State

If after provisioning a volume for a pod (for example Prometheus) the PVC still hangs in a Pending state, perform the
following checks:

1. Check that the volumes have been provisioned and are in a Ready state.

kubectl describe volume <volume-name>
[root@bootstrap vagrant]# kubectl describe volume test-volume

Name: <volume-name>
Status:
Conditions:
Last Transition Time: 2020-01-14T12:57:56Z
Last Update Time: 2020-01-14T12:57:56Z
Status: True
Type: Ready

2. Check that a corresponding PersistentVolume exists.

[root@bootstrap vagrant]# kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS .
—STORAGECLASS AGE CLAIM

<volume-name> 10Gi RWO Retain Bound
—<storage-class-name> 4d22h <persistentvolume-claim-name>

3. Check that the PersistentVolume matches the PersistentVolumeClaim constraints (size, labels, storage class).

¢ Find the name of your PersistentVolumeClaim:

2.14. Troubleshooting 81

MetalK8s

[root@bootstrap vagrant]# kubectl get pvc -n <namespace>

NAME STATUS VOLUME CAPACITY .
—ACCESS MODES STORAGECLASS AGE

<persistent-volume-claim-name> Bound <volume-name> 10Gi RWO..
. <storage-class-name> 24h

¢ Check if the PersistentVolumeClaim constraints match:

[root@bootstrap vagrant]# kubectl describe pvc <persistentvolume-claim-name> -n
<, <namespace>

Name: <persistentvolume-claim-name>

Namespace: <namespace>

StorageClass: <storage-class-name>

Status: Bound

Volume: <volume-name>

Capacity: 10Gi

Access Modes: RWO

VolumeMode: Filesystem

4. If no PersistentVolume exists, check that the storage operator is up and running.

[root@bootstrap vagrant]# kubectl -n kube-system get deployments storage-operator
NAME READY UP-TO-DATE AVAILABLE AGE
storage-operator 1/1 1 1 4d22h

Access to MetalK8s GUI Fails With “undefined backend”

If you encounter an “undefined backend” error while using the MetalK8s GUI, perform the following checks:

1. Check that the ingress controller pods are running.

[root@bootstrap vagrant]# kubectl -n metalk8s-ingress get daemonsets

NAME DESIRED CURRENT READY UP-TO-DATE .
—AVAILABLE NODE SELECTOR AGE
nginx-ingress-control-plane-controller 1 1 1 1 1.
< node-role.kubernetes.io/master= 4d22h

nginx-ingress-controller 1 1 1 1 1.
. <none> 4d22h

2. Check the ingress controller logs.

[root@bootstrap vagrant]# kubectl logs -n metalk8s-ingress nginx-ingress-control-
—plane-controller-ftg6v

NGINX Ingress controller

Release: 0.26.1
Build: git-2de5a893a
Repository: https://github.com/kubernetes/ingress-nginx

nginx version: openresty/1.15.8.2

82 Chapter 2. Operation

MetalK8s

2.15 Sosreport

The sosreport tool is installed automatically on all MetalK8s hosts, and embeds some custom plugins. It allows to
generate a report from a host, including logs, configurations, containers information, etc. This report can then be
consumed by an operator, or shared with Scality support, to investigate problems on a platform.

2.15.1 Generate A Report

To generate a report for a machine, you must have root access.

To include logs and configuration for containerd and MetalK8s components, run:

root@your-machine # sosreport --batch --all-logs \
-0 metalk8s -kmetalk8s.all=True -kmetalk8s.podlogs=True -kmetalk8s.describe=True \
-0 containerd -kcontainerd.all=True -kcontainerd.logs=True

The name of the generated archive is printed in the console output.

2.15.2 Plugins List

To display the full list of available plugins and their options, run:

sosreport --list-plugins

2.15. Sosreport 83

MetalK8s

84

Chapter 2. Operation

CHAPTER
THREE

DEVELOPER GUIDE

3.1 Architecture Documents

3.1.1 Alert History

Context

In NextGen UI we are introducing the Global Health Component that shows real time entity Health but also intends to
show entity Health over the last X days. This Global Health Component is available in the System Health Monitor as
well as in Metalk8s, xCore and XDM admin Uls. It applies to entities like Node, Volume, Platform, Storage Backends,
etc.

ONLINE

99.9745%

GLOBAL HEALTH @ Current QK

The entity Health is computed based on active alerts. In order to know the health of an entity as it was in the past,
we would need to collect alerts that were active for this specific past time. As soon as the Platform or Storage Admin
identifies a time at which the entity was degraded, he can access the detailed list of sub alerts impacting this entity.

Currently, once an active alert is cleared, it disappears from the System.

Goal
In order to achieve the UI functionality as described above, we would need to keep information about the alerts that
were fired in the past:

¢ The alert (all info that were available at the time the alert was fired)

* When it was fired

¢ When it was cleared

85

MetalK8s

User Stories

As a Platform/Storage Admin, I want to know the health of a given NextGen entity over the past X days in order to ease
root cause analysis.

Basically this should be achieved by collecting past alerts, belonging to this entity.

As a Platform/Storage Admin, I want to collect the list of sub alerts which contributed to the degradation on a specific
entity in the past, in order to understand more in details the cause of the degradation.

Here we would need to access all sub alerts (contributing to the entity high level alert). This is related to the Alert
grouping feature.

The X days to keep accessible is configurable and ideally matches with the history of other observability data (metrics
and logs) in order to ease the correlation between various observability indicators. This configuration must be persistent
across platform upgrades.

In conclusion, the system should retain all emitted alerts for a given configurable period.

The service exposing past alerts is to be used by NextGen Admin Uls. It can also be used by some NextGen tooling
when it comes to create a support ticket. It will not be used by xCore or XDM data workloads and it will not be exposed
for external usage.

Monitoring and Alerting

The service exposing past alerts should be monitored i.e. should expose key health/performance indicators that one
can consume through dedicated Grafana dashboard. An alert should be triggered when the service is degraded.

Deployment
The said service is part of the infra service category and it is either deployed automatically or some documentation
explains how to deploy it and provision storage for it.

It should support one node failure when deploying NextGen on more than 3 nodes, like for monitoring, alerting and
logging services.

Future/Bonus Features

Dedicated Grafana Dashboard to navigate through the past alerts without focusing on a specific entity only. From this
dashboard, one can select one or multiple labels as well as a specific period, in order to collect all alerts with a given
set of labels.

A dump of the past alerts could be added to the sos report that one would generate when collecting all information to
send to Scality support.

Design Choices

Alertmanager webhook

To retrieve alerts sent by Alertmanager, we configure a specific receiver where it sends each and every incoming alerts.
This receiver is a webhook which is basically an HTTP server listening on a port and waiting for HTTP POST request
from Alertmanager. It then forwards alerts to the storage backend.

Alerts sent by Alertmanager are JSON formatted as follows:

86 Chapter 3. Developer Guide

https://prometheus.io/docs/alerting/latest/configuration/#webhook_config

MetalK8s

{
"version": "4",
"groupKey": <string>, // key identifying the group of alerts (e.g. to.
—deduplicate)
"truncatedAlerts": <int>, // how many alerts have been truncated due to "max_
—alerts"
"status": "<resolved|firing>",
"receiver": <string>,
"groupLabels": <object>,
"commonLabels": <object>,
"commonAnnotations": <object>,
"externalURL": <string>, // backlink to the Alertmanager.
"alerts": [
{
"status": "<resolved|firing>",
"labels": <object>,
"annotations": <object>,
"startsAt": "<rfc3339>",
"endsAt": "<rfc3339>",
"generatorURL": <string> // identifies the entity that caused the alert
I
1
}

Alertmanager implements an exponential backoff retry mechanism, so We can not miss alerts if the webhook is un-
reachable/down. It will keep retrying until it manages to send the alerts.

Loki as storage backend

We use Loki as the storage backend for alert history because it provides several advantages.

First, it allows to easily store the alerts by simply logging them on the webhook container output, letting Fluent-bit
forward the alerts to it.

Loki uses a NoSQL database, which is better to store JSON documents than an SQL one, allowing us to not have to
create and maintain a database schema for the alerts.

Loki also provides an API allowing us to expose and query these alerts using the LogQL language.
Plus, since Loki is already part of the cluster, it saves us from having to install, manage and expose a new database.

Using Loki, we also directly benefit from its retention and purge mechanisms, making the alerts history retention time
automatically aligned with all other logs (14 days by default).

Warning: There is a drawback in using Loki, if at some point its volume is full (because there is too much logs),
we will not be able to store new alerts anymore, especially since there is no size-based purge mechanism.

Another issue is, since we share the retention configuration with the other logs, it is hard to ensure we will keep
enough alert history.

As for now, there is no retention based on labels, streams, tenant or whatever (on-going discussion GH Loki #162).

3.1. Architecture Documents 87

https://github.com/grafana/loki/issues/162

MetalK8s

Rejected Design Choices

Alertmanager API scraper

A program polling the Alertmanager API to retrieve alerts.

It generates more load and forces us to parse the result from the API to keep track of what we already forward to the
storage backend or query it to retrieve the previously sent alerts.

Plus, it does not allow to have alerts in near to real time, except if we poll the API in a really aggressive manner.

If the scraper is down for a long period of time, we could also loose some alerts.

Dedicated database as storage backend

Using a dedicated database to store alerts history was rejected, because it means adding an extra component to the
stack.

Furthermore, we would need to handle the database replication, lifecycle, etc.

We would also need to expose this database to the various components consuming the data, probably through an API,
bringing another extra component to develop and maintain.

Implementation Details

Alertmanager webhook

We need a simple container, with a basic HTTP server running inside, simply handling POST requests and logging
them on the standard output.

It will be deployed by Salt as part of the monitoring stack.

A deployment with only 1 replica will be used as we do not want duplicated entries and Alertmanager handles retry
mechanism if the webhook is unreachable.

An example of what we need can be found here <https://github.com/tomtom-international/alertmanager-webhook-
logger>.

Alertmanager configuration

The default Alertmanager’s configuration must be updated to send all alerts to this webhook.

Configuration example:

receivers:
- name: metalk8s-alert-logger
webhook_configs:
- send_resolved: true
url: http://<webhook-ip>:<webhook-port>
route:
receiver: metalk8s-alert-logger
routes:
- receiver: metalk8s-alert-logger
continue: True

88 Chapter 3. Developer Guide

MetalK8s

This configuration must not be overwritable by any user customization and the metalk8s-alert-logger receiver
must be the first route to ensure it will receive all the alerts.

Fluent-bit configuration

Logs from the webhook need to be handled differently than the other Kubernetes containers. Timestamps of the logs
must be extracted from the JSON timestamp key and only the JSON part of the log must be stored to make it easier
to use by automatic tools.

Expose Loki API

The Loki API must be reachable via the web UI, therefore it must be exposed through an ingress as it is already done
for Prometheus or Alertmanager APIs.

Global Health Component Implementation

In order to build the Global Health Component the UI queries loki API to retrieve past alerts. The users have the
ability to select a timespan for which they want to retrieve the alerts. The Ul is using this timespan to query loki for
alerts firing during this period. However Alertmanager is repeating webhooks for long running alerts to metalk8s-
alert-logger at a defined pace in its configuration. This means that for example if an alert is firing since 6hours and
alertmanager is configured to repeat the notification each 12 hours, querying loki for the last hour won’t list that alert.
Additionnaly if alertmanager or loki or the platform itself goes down old alerts won’t be closed and new ones will be
fired by alertmanager.

This leads to several issues that the UI have to solve when querying Loki to display the alert history: #. When the
platform/alertmanager/loki goes down the UI has to compute the end time of an alert and set it to the end time period
start timestamp. #. The alerts are duplicated in loki so the UI has to regroup them by fingerprint and start time.

We propose here to implement a useHistoryAlert hook in metalk8s ui which can be reused to retrieve past alerts. This
useHistoryAlert takes a list of filters as a parameter. These filters allow consumers to search for alert history of alerts
matching a specific set of labels or annotations. The signature of the hook is: useHistoryAlert(filters: {[label: string]:
string}): Alert(].

This hook is used in conjonction with an AlertHistoryProvider which is responsible of alert fetching and transformation.
It uses useMetricsTimeSpan hook to retrieve the period selected by the user and uses this period to fetch alerts on loki. It
additionnaly retriveves platform/monitoring unavailbility periods by querying for alertmanager number of firing alerts
metrics on Prometheus API. If the selected timespan is smaller than alertmanager notification period (period after
which alertmanager recall Metalk8s alert logger to signify that the alert is still firing), the hook is then fetching the
alerts for this period of time at minimum to ensure long firing alerts retrieval.

Once the downtime periods are retrieved they are converted to an Ul alert object with a specific severity set to unavail-
able so that we can display an unavailable segment on the Global health bar.

3.1. Architecture Documents 89

MetalK8s

In the Pollowing design the alert manager re-notification period i set To 12 hous (ine abter which AlertManager remotily about o fring alerts) 2, We can have several alerts with the same Brgerprint
1. how to know when the platform goes down? - We have to match/groups alerts per Fingerprint and “startsdt’
- one of them has an endsdt different than D00 OOrT0000:002"
Option 4 : Using only Loki Data we change the alerts to Take Ths eddsAT in accou

alerts stored in Loki for ths period - I we have several alerts with the same Fingerprint but no endsAt defined
up them by startsdt We change the alerts to set the erdsdt o Now or closest ‘grey me(

dtxgp(alerts before startsAt-Guin, B

a "grey period’,

7 Given o period of time ve retrieve all
| ’ alerts,
i
] 1
Pdaps | 6 dage

i@z |

oy 6 dage now

3. If the selected period is < 12 hours

When we donts have active alerts we still can do the same but
the previous. cnecks wil be on the previous watchdog alerts

- Loki wil only retrieves newly created or closed alerts. So we have to ot least
Catest index time of the previous watehdog alerts)

rs to buld the chart.
e wirimm auiery range Por loki is 12, hours

Issue : the inprecision of the “grey period” can be up to 12 hours. Psewlo code :

Mitigation © for mtmeus cometheus. and displo eriods” using prometheus dato Guhich metiric shall we use N N .
g AN S A iléxiﬁ@ e el 50 0 7 useHistorgdlertshiters?; fllabels stingd: stringd): AlertsL]

- const € startsdt, endsdt } = useSelectedTimespan®);

Option B Cselected for now as it gves more precision) | Using orly prometineus. data retrieve the dowtine period
} auery prometheus using Startsht, endsAt and this avery ¢
e acery pronetress fo “nelrtronogen lrts gen o knun s cacn s ot ol resa L Clirtraager) st onpuied ks ot e

one of the following everts occured : entify the missing Steps, I any keep the timestamp of missing Steps

Pr’ne_the s wert down result Stactol, mnber endsAt?: number, severity: 'wnavalable!, description: stringtl]

it vt don - oAt - Startsdt > 12 hours)

ole plactPorm was. down loki with startsdt and endst
oy 5 5 mes T ey 5 et g ot lly svsiole o e s Gt s vl . e\s:‘ auery Toki wAth = o

e e e auery loki with Startsdt = endsdt - 12 hours ovel Cprovided endsdt

= lobstﬁe

lerts = transPormLoki StreamlD: Alert:

const alertswhichCouldBelx tmp{s{ ,wpulmsnyﬁmnmsrmm(m» upli mtmlms);
const alerts = alertswhichCouldBeInterruptedmaglalert => £

001-01-01T00:00:002") €

) endsdti dlabilityPeriodOrNokalert starts 4t

3, fikters): Startsdt)

Grafana dashboard

Alerts are already retrievable from the Logs dashboard, but it is not user friendly as the webhook pod name must be
known by the user and metrics displayed are relative to the pod, not the alerts themselves.

A dedicated Grafana dashboard with the alerts and metrics related to them will be added.

This dashboard will be deployed by adding a ConfigMap alert-history-dashboard in Namespace
metalk8s-monitoring:

apiVersion: v1
kind: ConfigMap
metadata:
name: alert-history-dashboard
namespace: metalk8s-monitoring
labels:
grafana_dashboard: "1"
data:
alert-history.json: <DASHBOARD DEFINITION>

Test Plan

Add a test in post-install to ensure we can at least retrieve the Watchdog alert using Loki API.

3.1.2 Alerting Functionalities

Context

MetalKS8s is automatically deploying Prometheus, Alertmanager and a set of predefined alert rules. In order to leverage
Prometheus and Alertmanager functionalities, we need to explain, in the documentation, how to use it. In a later stage,
those functionalities will be exposed through various administration and alerting Uls, but for now, we want to provide
our administrator with enough information in order to use very basic alerting functionalities.

90 Chapter 3. Developer Guide

MetalK8s

Requirements
As a MetalK8s administrator, I want to list or know the list of alert rules that are deployed on MetalK8s Prometheus
cluster, In order to identify on what specific rule I want to be alerted.

As a MetalK8s administrator, I want to set notification routing and receiver for a specific alert, In order to get notified
when such alert is fired The important routing to support are email, slack and pagerduty.

As a MetalK8s administrator, I want to update thresholds for a specific alert rule, In order to adapt the alert rule to the
specificities and performances of my platform.

As a MetalK8s administrator, I want to add a new alert rule, In order to monitor a specific KPI which is not monitored
out of the box by MetalK8s.

As a MetalK8s administrator, I want to inhibit an alert rule, In order to skip alerts in which I am not interested.

As a MetalK8s administrator, I want to silence an alert rule for a certain amount of time, In order to skip alert notifica-
tions during a planned maintenance operation.

Warning: In all cases, when MetalK8s administrator is upgrading the cluster, all listed customizations should
remain.

Note: Alertmanager configuration documentation is available here

Design Choices

To be able to edit existing rules, add new ones, etc., and in order to keep these changes across restorations, upgrades
and downgrades, we need to put in place some mechanisms to configure Prometheus and Alertmanager and persist
these configurations.

For the persistence part, we will rely on what has been done for CSC (Cluster and Services Configurations), and use
the already defined resources for Alertmanager and Prometheus.

Extra Prometheus Rules

We will use the already existing metalk8s-prometheus-config ConfigMap to store the Prometheus configuration
customizations.

Adding extra alert and record rules will be done editing this ConfigMap under the spec.extraRules key in config.
yaml as follows:

apiVersion: vl
kind: ConfigMap
metadata:
name: metalk8s-prometheus-config
namespace: metalk8s-monitoring
data:
config.yaml: |-
apiVersion: addons.metalk8s.scality.com
kind: PrometheusConfig
spec:
deployment:

(continues on next page)

3.1. Architecture Documents 91

https://prometheus.io/docs/alerting/configuration/

MetalK8s

(continued from previous page)

replicas: 1

extraRules:
groups:
- name: <rulesGroupName>
rules:
- alert: <AlertName>
annotations:

description: description of what this alert is
expr: vector(1l)
for: 10m
labels:
severity: critical
- alert: <AnotherAlertName>

[...]
- record: <recordName>
[...]
- name: <anotherRulesGroupName>
[...]

PromQL is to be used to define expr field.

This spec.extraRules entry will be used to generate through Salt a PrometheusRule object named
metalk8s-prometheus-extra-rules in the metalk8s-monitoring namespace, which will be automatically con-
sumed by the Prometheus Operator to generate the new rules.

A CLI and UI tooling will be provided to show and edit this configuration.

Edit Existing Prometheus Alert Rules

To edit existing Prometheus rules, we can’t only define new PrometheusRules resources since Prometheus Operator
will not overwrite those already existing, but will rather append them to the list of rules, ending up with 2 rules with
the same name but different parameters.

We also can’t edit the PrometheusRules deployed by MetalK8s, otherwise we would lose these changes in case of
cluster restoration, upgrade or downgrade.

So, in order to allow the user to customize the alert rules, we will pick up some of them (the most relevant ones) and
expose only few parts of their configurations (e.g. threshold) to be customized.

It also makes the customization of these alert rules easier for the user as, for example, he will not need to understand
PromQL to adapt the threshold of an alert rule.

Since in Prometheus rules, there are duplicated group name + alert rule name, we also need to take the severity into
account to understand which specific alert we’re editing.

These customization will be stored in the metalk8s-prometheus-config ConfigMap with something like:

apiVersion: vl
kind: ConfigMap
metadata:
name: metalk8s-prometheus-config
namespace: metalk8s-monitoring
data:
config.yaml: |-
apiVersion: addons.metalk8s.scality.com

(continues on next page)

92 Chapter 3. Developer Guide

https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/

MetalK8s

(continued from previous page)

kind: PrometheusConfig
spec:
deployment:
replicas: 1
rules:
<alertGroupName>:
<alertName>:
warning:
threshold: 30
critical:
threshold: 10
<anotherAlertGroupName>:
<anotherAlertName>:
critical:
threshold: 20
anotherThreshold: 10

The PrometheusRules object manifests salt/metalk8s/addons/prometheus-operator/deployed/chart.
sls need to be templatized to consume these customizations through CSC module.

Default values for customizable alert rules to fallback on, if not defined in the ConfigMap, will be set in salt/
metalk8s/addons/prometheus-operator/config/prometheus.yaml.

Custom Alertmanager Configuration

We will use the already existing metalk8s-alertmanager-config ConfigMap to store the term:Alertmanager con-
figuration customizations.

A Salt module will be developed to manipulate this object, so the logic can be kept in only one place.
This module must provide necessary methods to show or edit the configuration in 2 different ways:

* simple

* advanced

The simple mode will only display and allow to change some specific configuration, such as the receivers or the inhibit
rules, and in an as simple as possible manner for the user.

The advanced mode will allow to change all the configuration points, exposing the whole configuration as a plain
YAML.

This module will then be exposed through a CLI and a UL

Retrieve Alert Rules List

To retrieve the list of alert rules, we must use the Prometheus API. This can be achieved using the following route:

http://<prometheus-ip>:9090/api/vl/rules

This API call should be done in a Salt module metalk8s_monitoring which could then be wrapped in a CLI and UI.

3.1. Architecture Documents 93

https://prometheus.io/docs/prometheus/latest/querying/api

MetalK8s

Silence an Alert

To silence an alert, we need to send a query to the Alertmanager API. This can be done using the following route:

http://<alertmanager-ip>:9093/api/vl/silences

With a POST query content formatted as below:

{
"matchers": [
{
"name": "alert-name",
"value": "<alert-name>"
}
1,
"startsAt": "2020-04-10T12:12:12",
"endsAt": "2020-04-10T13:12:12",
"createdBy": "<author>",
"comment": "Maintenance is planned",
"status": {
"state": "active"
}
}

We must also be able to retrieve silenced alerts and to remove a silence. This will be done using the API, with the same
route using GET and DELETE word respectively:

GET - to list all silences
http://<alertmanager-ip>:9093/api/vl/silences

DELETE - to delete a specific silence
http://<alertmanager-ip>:9093/api/vl/silence/<silence-id>

We will need to provide these functionnalities through a Salt module metalk8s_monitoring which could then be
wrapped in a CLI and Ul

Extract Rules Tooling

We need to build a tool to extract all alert rules from the Prometheus Operator rendered chart salt/metalk8s/
addons/prometheus-operator/deployed/chart.sls.

Its purpose will be to generate a file (each time this chart is updated) which will then be used to check that what’s
deployed matches what was expected.

And so, we will be able to see what has been changed when updating Prometheus Operator chart and see if there is any
change on customizable alert rules.

94 Chapter 3. Developer Guide

MetalK8s

Rejected Design Choices

Using amtool vs Alertmanager API

Managing alert silences can be done using amtool:

Add

amtool --alertmanager.url=http://localhost:9093 silence add \
alertname="<alert-name>" --comment 'Maintenance is planned'

List

amtool --alertmanager.url=http://localhost:9093 silence query

Delete
amtool --alertmanager.url=http://localhost:9093 silence expire <silence-id>

This option has been rejected because, to do so, we need to install an extra dependency (amtool binary) or run the
commands inside the Alertmanager container, rather than simply send HTTP queries on the APL

Implementation Details

Iteration 1

* Add an internal tool to list all Prometheus alert rules from rendered chart
* Implement Salt formulas to handle configuration customization (advanced mode only)
 Provide CLI and UI to wrap the Salt calls
» Customization of node-exporter alert group thresholds
* Document how to:
— Retrieve the list of alert rules

Add a new alert rule

Edit an existing alert rule

Configure notifications (email, slack and pagerduty)

Silence an alert

Deactivate an alert

Iteration 2

* Implement the simple mode in Salt formulas
¢ Add the simple mode to both CLI and UI

» Update the documentation with the simple mode

3.1. Architecture Documents 95

https://github.com/prometheus/alertmanager/blob/master/README.md#amtool
https://github.com/prometheus/alertmanager/blob/master/README.md#amtool

MetalK8s

Documentation

In the Operational Guide:
¢ Document how to manage silence on alerts (list, create & delete)
* Document how to manage alert rules (list, create, edit)
* Document how to configure alertmanager notifications
* Document how to deactivate an alert

e Add a list of alert rules configured in Prometheus, with a brief explanation for each and what can be customized

Test Plan
Add a new test scenario using pytest-bdd framework to ensure the correct behavior of this feature. These tests must be
put in the post-merge step in the CI and must include:

* Configuration of a receiver in Alertmanager

* Configuration of inhibit rules in Alertmanager

¢ Add a new alert rule in Prometheus

» Customize an existing alert rule in Prometheus

» Alert silences management (add, list and delete)

* Deployed Prometheus alert rules must match what’s expected from a given list (generated by a tool Extract Rules
Tooling)

3.1.3 Metalk8s predefined Alert rules and Alert Grouping

Context

As part of Metalk8s, we would like to provide the Administrator with built-in rules expressions that can be used to
fire alerts and send notifications when one of the High Level entities of the system is degraded or impacted by the
degradation of a Low Level component.

As an example, we would like to notify the administrator when the MetalK8s log service is degraded because of some
specific observed symptoms:

* not all log service replicas are scheduled
* one of the persistent volumes claimed by one log service replica is getting full.
* Log DB Ingestion rate is near zero

In this specific example, the goal is to invite the administrator to perform manual tasks to avoid having a Log Service
interruption in the near future.

96 Chapter 3. Developer Guide

MetalK8s

Vocabulary

Atomic Alert: An Alert which is based on existing metrics in Prometheus and which is linked to a specific symptom.

High Level Alert: An Alert which is based on other atomic alerts or High Level alerts.

Requirements

When receiving such High Level alerts, we would like the system to guide the administrator to find and understand the
root cause of the alert as well as the path to resolve it. Accessing the list of observed low level symptoms will help the
administrator’s investigation.

Having the High Level Alerts also helps the administrator to have a better understanding of what part/layer/component
of the System is currently impacted (without having to build a mental model to guess the impact of any existing atomic
alert in the System)

Identity Platform Alerts

= Overview for datacenter: (Datacenter-1 v £ metrics updated 2 minutes ago

Active Alerts (5]
(Global Health
w=p Datacenter-1 A PlatformDegraded 0
—_ Eas ast

18 22 24/C A PlatformServicesDegraded 06:15:50 >

Inventory Network Metrics

Nodes Volumes Planes [AVRVEEELNE)

Control Plane Workload Plane
2 16

Control Plane Bandwidth (MB/s)
Services Status
node-1 = node-2
Core
K8s master System Load

Bootstrap Out

Observability Workload Plane Bandwidth (MB/s)

Monitoring
node-1 = node-2
@ Logging

Access 00 22 2 0 26 Memory (%)

ingress Controller

Authentication

node-1 = node-2

Throughput

A bunch of atomic alerts are already deployed but we don’t yet have the High Level Alerts that we could use to build
the above the MetalK8s dashboard. Being able to define the impact of one atomic alert is a way to build those High
Level Alerts:

It is impossible to modelize all possible causes through this kind of impacting tree. However, when an alert is received,
the system shall suggest other alerts that may be linked to it, (maybe using matching labels).

Also, when accessing the Node or the Volume page / alert tab, the administrator should be able to visualise all the fired
alerts that are described under Nodes or Volumes entities.

In the end, the way to visualise the impact of an atomic alert in the alert page is described with the screenshot below:

3.1. Architecture Documents 97

MetalK8s

Overview Identity ~ Platform Alerts

Alerts Active Alerts @ Critical Warning @

History

Total:
6 Alerts

Search
Instance » Name & Description $ Active Since $
@ Platform GlobalHealth PlatformDegraded The Platform is degraded 2021-03-08 06:18:44
@ Datacenter-1Services PlatformServicesDegraded The Platform services are degraded 2021-03-08 06:15:50
@ Observability ObservabilityServicesDegraded The observability services are degraded 2021-03-08 06:15:02
@ LokiService LokiServiceDegraded Service app.kubernetes.io/name=loki is degraded 2021-03-08 06:14:30

log-vol-1 VolumeDegraded The volume logging-vol-1 on node prod-main-node-1 s at risk 2021-03-0 05

© Datacenter-2 PlatformServicesDegraded The Platform services are degraded 2021-08-08 10:17:10

The High Level alerts should be easily identifiable in order to filter it out in the UI views. Indeed, the a first iteration
we might want to display the atomic alerts only until all High Level alerts are implemented and deployed.

Severity Classification

* Critical Alert = Red = Service Offline or At Risk, requires immediate intervention
* Warning Alert = Yellow = Service Degraded, requires planned (within 1 week) intervention
* No Active Alert = Green = Service Healthy

Notifications are either a mail, slack message or whatever routing supported by AlertManager or a decorated icon in
the UL

Data Model

We consider that Nodes and Volumes don’t impact the Platform directly. As such they are not belonging to Platform.
Volumes
Nodes
» System Partitions
Platform
* Platform Services
- Core
— Observability
— Access

e Network

98 Chapter 3. Developer Guide

MetalK8s

Platform
Table 1: PlatformAtRisk

Severity Critical
Summary The Platform is at risk
Parent none
Sub Alert Sever- | Filter

ity
PlatformServicesAtRisk Critical

Table 2: PlatformDegraded

Severity Warning
Summary The Platform is degraded
Parent none
Sub Alert Sever- | Filter

ity
PlatformServicesDegraded Warning
ControlPlaneNetworkDegraded Warning
WorkloadPlaneNetworkDegraded Warning

Nodes

Table 3: NodeAtRisk
Severity Critical
Summary Node <nodename> is at risk
Parent none
Sub Alert Sever- | Filter

ity
KubeletClientCertificateExpiration Critical
NodeRAIDDegraded Critical
SystemPartitionAtRisk Critical

Table 4: NodeDegraded

Severity Warning
Summary Node <nodename> is degraded
Parent none

3.1. Architecture Documents

99

MetalK8s

Sub Alert Sever- | Filter
ity
KubeNodeNotReady Warning
KubeNodeReadinessFlapping Warning
KubeNodeUnreachable Warning
KubeletClientCertificateExpiration Warning
KubeletClientCertificateRenewalErrors Warning
KubeletPlegDurationHigh Warning
KubeletPodStartUpLatencyHigh Warning
KubeletServerCertificateExpiration Warning
KubeletServerCertificateExpiration Warning
KubeletServerCertificateRenewalErrors Warning
KubeletTooManyPods Warning
NodeClockNotSynchronising Warning
NodeClockSkewDetected Warning
NodeRAIDDiskFailure Warning
NodeTextFileCollectorScrapeError Warning
SystemPartitionDegraded Warning

Currently no atomic Alert is defined yet for the following
 System Unit (kubelet, containerd, salt-minion, ntp) would need to enrich node exporter
* RAM
« CPU

System Partitions

Table 5: SystemPartitionAtRisk

Severity Warning
Summary The partition <mountpoint> on node <nodename> is at risk
Parent NodeAtRisk
Sub Alert Sever- | Filter
ity

NodeFilesystemAlmostOutOfSpace Critical
NodeFilesystemAlmostOutOfFiles Critical
NodeFilesystemFilesFillingUp Critical
NodeFilesystemSpaceFillingUp Critical

Table 6: SystemPartitionDegraded
Severity Warning
Summary The partition <mountpoint> on node <nodename> is degraded
Parent NodeDegraded

100 Chapter 3. Developer Guide

MetalK8s

Sub Alert Sever- | Filter

ity
NodeFilesystemAlmostOutOfSpace Warning
NodeFilesystem AlmostOutOfFiles Warning
NodeFilesystemFilesFillingUp Warning
NodeFilesystemSpaceFillingUp Warning

Volumes
Table 7: VolumeAtRisk

Severity Critical
Summary The volume <volumename> on node <nodename> is at risk
Parent multiple parents
Sub Alert Sever- | Filter

ity
KubePersistentVolumeErrors Warning
KubePersistentVolumeFillingUp Critical

Table 8: VolumeDegraded

Severity Warning
Summary The volume <volumename> on node <nodename> is degraded
Parent multiple parents
Sub Alert Sever- | Filter
ity
KubePersistentVolumeFillingUp Warning

Platform Services

Table 9: PlatformServicesAtRisk

Severity Critical

Summary The Platform services are at risk

Parent PlatformAtRisk

Sub Alert Sever- | Filter
ity

CoreServicesAtRisk Critical

ObservabilityServicesAtRisk Critical

Table 10: PlatformServicesDegraded

Severity Warning
Summary The Platform services are degraded
Parent PlatformDegraded

3.1. Architecture Documents

101

MetalK8s

Sub Alert Sever- | Filter
ity
CoreServicesDegraded Warning
ObservabilityServicesDegraded Warning
AccessServicesDegraded Warning
Core

Table 11: CoreServicesAtRisk

Severity Critical
Summary The Core services are at risk
Parent PlatformServicesAtRisk
Sub Alert Sever- | Filter

ity
K8sMasterServicesAtRisk Critical

Table 12: CoreServicesDegraded

Severity Warning
Summary The Core services are degraded
Parent PlatformServicesDegraded
Sub Alert Sever- | Filter

ity
KS8sMasterServicesDegraded Critical
BootstrapServicesDegraded Critical

Table 13: K8sMasterServicesAtRisk

Severity Warning
Summary The kubernetes master services are at risk
Parent CoreServicesAtRisk

102 Chapter 3. Developer Guide

MetalK8s

Sub Alert Sever- | Filter
ity
KubeAPIErrorBudgetBurn Critical
etcdHighNumberOfFailedGRPCRequests Critical
etcdGRPCRequestsSlow Critical
etcdHighNumberOfFailedHTTPRequests Critical
etcdInsufficientMembers Critical
etcdMembersDown Critical
etcdNoLeader Critical
KubeStateMetricsListErrors Critical
KubeStateMetrics WatchErrors Critical
KubeAPIDown Critical
KubeClientCertificateExpiration Critical
KubeClientCertificateExpiration Critical
KubeControllerManagerDown Critical
KubeletDown Critical
KubeSchedulerDown Critical

Table 14: K8sMasterServicesDegraded

Severity Warning
Summary The kubernetes master services are degraded
Parent CoreServicesDegraded
Sub Alert Sever- | Filter

ity
KubeAPIErrorBudgetBurn Warning
etcdHighNumberOfFailedGRPCRequests Warning
etcdHTTPRequestsSlow Warning
etcdHighCommitDurations Warning
etcdHighFsyncDurations Warning
etcdHighNumberOfFailedHTTPRequests Warning
etcdHighNumberOfFailedProposals Warning
etcdHighNumberOfLeaderChanges Warning
etcdMemberCommunicationSlow Warning
KubeCPUOvercommit Warning
KubeCPUQuotaOvercommit Warning
KubeMemoryOvercommit Warning
KubeMemoryQuotaOvercommit Warning
KubeClientCertificateExpiration Warning
KubeClientErrors Warning
KubeVersionMismatch Warning
KubeDeploymentReplicasMismatch Warning | kube-system/coredns
KubeDeploymentReplicasMismatch Warning | metalk8s-monitoring/prometheus-adapter
KubeDeploymentReplicasMismatch Warning | metalk8s-monitoring/prometheus-operator-kube-state-

metrics

3.1. Architecture Documents

103

MetalK8s

Table 15: BootstrapServicesDegraded

Severity Warning
Summary The bootstrap services are degraded
Parent CoreServicesDegraded
Sub Alert Sever- | Filter

ity
KubePodNotReady Warning | kube-system/repositories-<bootstrapname>
KubePodNotReady Warning | kube-system/salt-master-<bootstrapname>
KubeDeploymentReplicasMismatch Warning | kube-system/storage-operator
KubeDeploymentReplicasMismatch Warning | metalk8s-ui/metalk8s-ui

Note: The name of the bootstrap node depends on how MetalK8s is deployed. We would need to automatically
configure this alert during deployment. We may want to use more deterministic filter to find out the repository and

salt-master pods.

Observability

Table 16: ObservabilityServicesAtRisk

Severity Critical

Summary The observability services are at risk

Parent PlatformServicesAtRisk

Sub Alert Sever- | Filter
ity

MonitoringServiceAtRisk Critical

AlertingServiceAtRisk Critical

LoggingServiceAtRisk Critical

Table 17: ObservabilityServicesDegraded

Severity Warning

Summary The observability services are degraded

Parent PlatformServicesDegraded

Sub Alert Sever- | Filter
ity

MonitoringServiceDegraded Warning

AlertingServiceDegraded Warning

DashboardingServiceDegraded Warning

LoggingServiceDegraded Warning

104

Chapter 3.

Developer Guide

MetalK8s

Table 18: MonitoringServiceAtRisk

Severity Warning
Summary The monitoring service is at risk
Parent ObservabilityServicesAtRisk
Sub Alert Sever- | Filter
ity

PrometheusRuleFailures Critical
PrometheusRemote WriteBehind Critical
PrometheusRemoteStorageFailures Critical
PrometheusErrorSendingAlert- Critical
sToAnyAlertmanager
PrometheusBadConfig Critical

Table 19: MonitoringServiceDegraded
Severity Warning
Summary The monitoring service is degraded
Parent ObservabilityServicesDegraded

3.1. Architecture Documents

105

MetalK8s

Sub Alert Sever- | Filter
ity

VolumeDegraded Warning | app.kubernetes.io/name=prometheus-operator-
prometheus

VolumeAtRisk Critical | app.kubernetes.io/name=prometheus-operator-
prometheus

TargetDown Warning | To be defined

PrometheusTargetLimitHit Warning

PrometheusTSDBReloadsFailing Warning

PrometheusTSDBCompactionsFailing Warning

PrometheusRemoteWriteDesiredShards Warning

PrometheusOutOfOrderTimestamps Warning

PrometheusNotificationQueueRunningFull | Warning

PrometheusNotIngestingSamples Warning

PrometheusNotConnectedToAlertmanagers | Warning

PrometheusMissingRuleEvaluations Warning

PrometheusErrorSendingAlertsToSomeAl- | Warning

ertmanagers

PrometheusDuplicateTimestamps Warning

PrometheusOperatorWatchErrors Warning

PrometheusOperatorSyncFailed Warning

PrometheusOperatorRejectedResources Warning

PrometheusOperatorReconcileErrors Warning

PrometheusOperatorNotReady Warning

PrometheusOperatorNodeLookupErrors Warning

PrometheusOperatorListErrors Warning

KubeStatefulSetReplicasMismatch Warning | metalk8s-monitoring/prometheus-prometheus-
operator-prometheus

KubeDeploymentReplicasMismatch Warning | metalk8s-monitoring/prometheus-operator-operator

KubeDaemonSetNotScheduled Warning | metalk8s-monitoring/prometheus-operator-

prometheus-node-exporter

Table 20: LoggingServiceAtRisk

Severity Critcal

Summary The logging service is at risk

Parent ObservabilityServicesAtRisk

Sub Alert Sever- | Filter
ity

AlertmanagerConfiglnconsistent Critical

AlertmanagerMembersInconsistent Critical

AlertmanagerFailedReload Critical

Table 21: LoggingServiceDegraded

Severity Warning
Summary The logging service is degraded
Parent ObservabilityServicesDegraded
106 Chapter 3. Developer Guide

MetalK8s

Sub Alert Sever- | Filter

ity
VolumeDegraded Warning | app.kubernetes.io/name=loki
VolumeAtRisk Critical | app.kubernetes.io/name=loki
TargetDown Warning | To be defined
KubeStatefulSetReplicasMismatch Warning | metalk8s-logging/loki
KubeDaemonSetNotScheduled Warning | metalk8s-logging/fluentbit

Table 22: AlertingServiceAtRisk

Severity Critcal

Summary The alerting service is at risk

Parent ObservabilityServicesAtRisk

Sub Alert Sever- | Filter
ity

AlertmanagerConfiglnconsistent Critical

AlertmanagerMembersInconsistent Critical

AlertmanagerFailedReload Critical

Table 23: AlertingServiceDegraded

Severity Warning

Summary The alerting service is degraded

Parent ObservabilityServicesDegraded

Sub Alert Sever- | Filter

ity

VolumeDegraded Warning | app.kubernetes.io/name=prometheus-operator-
alertmanager

VolumeAtRisk Critical | app.kubernetes.io/name=prometheus-operator-
alertmanager

TargetDown Warning | To be defined

KubeStatefulSetReplicasMismatch Warning | metalk8s-monitoring/alertmanager-prometheus-
operator-alertmanager

AlertmanagerFailedReload Warning

Table 24: DashboardingServiceDegraded

Severity Warning
Summary The dashboarding service is degraded
Parent ObservabilityServicesDegraded
Sub Alert Sever- | Filter
ity
KubeStatefulSetReplicasMismatch Warning | metalk8s-monitoring/prometheus-operator-grafana
TargetDown Warning | To be defined

3.1. Architecture Documents

107

MetalK8s

Network
Table 25: ControlPlaneNetworkDegraded
Severity Warning
Summary The Control Plane Network is degraded
Parent PlatformDegraded
Sub Alert Sever- | Filter
ity
NodeNetworkReceiveErrs Warning | Need to filter on the proper cp interface
NodeHighNumberConntrackEntriesUsed Warning | Need to filter on the proper cp interface
NodeNetworkTransmitErrs Warning | Need to filter on the proper cp interface
NodeNetworkInterfaceFlapping Warning | Need to filter on the proper cp interface
Table 26: WorkloadPlaneNetworkDegraded
Severity Warning
Summary The Workload Plane Network is degraded
Parent PlatformDegraded
Sub Alert Sever- | Filter
ity
NodeNetworkReceiveErrs Warning | Need to filter on the proper wp interface
NodeHighNumberConntrackEntriesUsed Warning | Need to filter on the proper wp interface
NodeNetworkTransmitErrs Warning | Need to filter on the proper wp interface
NodeNetworkInterfaceFlapping Warning | Need to filter on the proper wp interface

Note: The name of the interface used by Workload Plane and/or Control Plane is not known in advance. As such, we
should find a way to automatically configure the Network alerts based on Network configuration.

Note: Currently we don’t have any alerts for the Virtual Plane which is provided by kube-proxy, calico-kube-
controllers, calico-node. It is not even part of the MetalK8s Dashboard page. We may want to introduce it.

Access
Table 27: AccessServicesDegraded
Severity Warning
Summary The Access services are degraded
Parent PlatformServicesDegraded
Sub Alert Sever- | Filter
ity
IngressControllerDegraded Warning
AuthenticationDegraded Warning

108 Chapter 3. Developer Guide

MetalK8s

Table 28: IngressControllerDegraded

Severity Warning
Summary The Ingress Controllers for CP and WP are degraded
Parent AccessServicesDegraded
Sub Alert Sever- | Filter
ity
KubeDeploymentReplicasMismatch Warning | metalk8s-ingress/ingress-nginx-defaultbackend
KubeDaemonSetNotScheduled Warning | metalk8s-system/ingress-nginx-controller
KubeDaemonSetNotScheduled Warning | metalk8s-system/ingress-nginx-control-plane-
controller

Table 29: AuthenticationDegraded

Severity Warning
Summary The Authentication service for K8S API is degraded
Parent AccessServicesDegraded
Sub Alert Sever- | Filter

ity
KubeDeploymentReplicasMismatch Warning | metalk8s-auth/dex

3.1.4 Authentication

Context

Currently, when we deploy MetalK8s we pre-provision a super admin user with a username/password pair. This implies
that anyone wanting to use the K8s/Salt APIs needs to authenticate using this single super admin user.

Another way to access the APIs is by using the K8s admin certificate which is stored in /etc/kubernetes/admin.
conf. We could also manually provision other users, their corresponding credentials as well as role bindings but this
current approach is inflexible to operate in production setups and security is not guaranteed since username/password

pairs are stored in cleartext.

We would at least like to be able to add different users with different credentials and ideally integrate K8s authentication

system with an external identity provider.

Managing K8s role binding between user/groups high-level roles and K8s roles is not part of this specification.

Requirements

Basically, we are talking about:

* Being able to provision users with a local Identity Provider (IDP)

* Being able to integrate with an external IDP

Integration with LDAP and Microsoft Active Directory (AD) are the most important ones to support.

3.1. Architecture Documents

109

MetalK8s

User Stories

Pre-provisioned user and password change

In order to stay aligned with many other applications, it would make sense to have a pre-provisioned user with all
privileges (kind of super admin) and pre-provisioned password so that it is easy to start interacting with the system
through various admin Uls. Whatever UI this user opens for the first time, the system should ask him/her to change the
password for obvious security reasons.

User Management with local IdP

As an IT Generalist, I want to provision/edit users and high-level roles. The MetalK8s high-level roles are:
* Cluster Admin
* Solution Admin
* Read Only

This is done from CLI with well-documented procedure. Entered passwords are never visible and encrypted when
stored in local IDP DB. The CLI tool enables to add/delete and edit passwords and roles.

External IDP Integration

As an IT Generalist, I want to leverage my organisation’s IDP to reuse already provisioned users & groups. The way
we do that integration is through a CLI tool which does not require to have deep knowledge in K8s or in any local IDP
specifics. When External IDP Integration is set up, we can always use local IDP to authenticate.

Authentication check

UI should make sure the user is well authenticated and if not, redirect to the local IDP login page. In the local IDP
login page, the user should choose between authenticating with local IDP or with external IDP. If no external IDP is
configured, no choice is presented to the user. This local IDP login page should be styled so that it looks like any other
MetalKS8s or solutions web pages. All admin Uls should share the same IDP.

Configuration persistence

Upgrading or redeploying MetalK8s should not affect configuration that was done earlier (i.e. local users and credentials
as well as external IDP integration and configuration)

SSO between Admin Uls

Once IDP is in place and users are provisioned, one authenticated user can easily navigate to the other admin Uls
without having to re-authenticate.

110 Chapter 3. Developer Guide

MetalK8s

Open questions

* Authentication across multiple sites
¢ SSO across MetalK8s and solutions Admin Uls and other workload Management Uls

* Our customers may want to collect some statistics out of our Prometheus instances. This API could be authenti-
cated using OIDC, using an OIDC proxy, or stay unauthenticated. One should consider the following factors:

— the low sensitivity of the exposed data
— the fact that it is only exposed on the control-plane network

— the fact that most consumers of Prometheus stats are not human (e.g. Grafana, a federating Prometheus,
scripts and others), hence not well-suited for performing the OIDC flow

Design Choices

Dex is chosen as an Identity Provider(IdP) in MetalK8s based on the above Requirements for the following reasons:

* Dex’s support for multiple plugins enable integrating the OIDC flow with existing user management systems
such as Active Directory, LDAP, SAML and others.

* Dex can be seamlessly deployed in a Kubernetes cluster.

 Dex provides access to a highly customizable UI which is a step closer to good user experience which we advocate
for.

* Dex can act as a fallback Identity Provider in cases where the external providers become unavailable or are not
configured.

Rejected design choices
Static password file Vs OpenID Connect

Using static password files involves adding new users by updating a static file located on every control-plane Node.
This method requires restarting the Kubernetes API server for every new change introduced.

This was rejected since it is inflexible to operate, requires storing user credentials and there is no support for a pluggable
external identity provider such as LDAP.

X.509 certificates Vs OpenID Connect

Here, each user owns a signed certificate that is validated by the Kubernetes API server.

This approach is not user-friendly that is each certificate has to be manually signed. Providing certificates for accessing
the MetalK8s UI needs much more efforts since these certificates are browser incompatible. Using certificates is tedious
since the certificate revocation process is also cumbersome.

3.1. Architecture Documents 111

https://github.com/dexidp/dex/

MetalK8s

Keycloak Vs Dex

Both systems use OpenID Connect (OIDC) to authenticate a user using a standard OAuth2 flow.
They both offer the ability to have short lived sessions so that user access can be rotated with minimum efforts.

Finally, they both provide a means for identity management to be handled by an external service such as LDAP, Active
Directory, SAML and others.

Why not Keycloak?

Keycloak while offering similar features as Dex and even much more was rejected for the following reasons:

* Keycloak is complex to operate (requires its own standalone database) and manage (frequent database backups
are required).

 Currently, no use case exist for implementing a sophisticated Identity Provider like Keycloak when the minimal
Identity Provider from Dex is sufficient.

Note that, Keycloak is considered a future fallback Identity Provider if the need ever arises from a customer standpoint.

Unexploited choices

¢ Guard

A Kubernetes webhook authentication server by AppsCode, allowing you to log into your Kubernetes cluster by using
various identity providers such as LDAP.

¢ ORY Hydra

It’s an OpenlID Connect provider optimized for low resource consumption. ORY Hydra is not an identity provider but
it is able to connect to existing identity providers.

Implementation Details

Iteration 1

» Using Salt, generate self-signed certificates needed for Dex deployment

* Deploy Dex in MetalK8s from the official Dex Charts while making use of the generated certificates above
* Provision an admin super user

* Configure Kubernetes API server flags to use Dex

* Expose Dex on the control-plane using Ingress

* Print the admin super user credentials to the CLI after MetalK8s bootstrap is complete

* Implement MetalK8s Ul integration with Dex

* Theme the Dex GUI to match MetalK8s Ul specs (optional for iteration 1)

112 Chapter 3. Developer Guide

https://github.com/appscode/guard/
https://github.com/ory/hydra/

MetalK8s

Iteration 2

 Provide documentation on how to integrate with these external Identity Providers especially LDAP and Microsoft
Active Directory.

Iteration 3

* Provide Single sign-on(SSO) for Grafana
* Provide SSO between admin Uls

Iteration 4

* Provide a CLI command to change the default superuser password as a prompt after bootstrap
 Provide a CLI for user management and provisioning
The following operations will be supported using the CLI tool:
* Create users password
* List existing passwords
* Delete users password
« Edit existing password

The CLI tool will also be used to create MetalK8s dedicated roles as already specified in the requirements section of
this document (see high-level roles from the requirements document).

Since it is not advisable to perform the above mentioned operations at the Dex ConfigMap level, using the Dex gRPC
API could be the way to go.

Iteration 5

* Demand for a superuser’s default password change upon first UI access

* Provide Ul integration that performs similar CLI operations for user management and provisioning
This means from the MetalK8s UI, a Cluster administrator should be able to do the following:

* Create passwords for users

* List existing passwords

* Delete users password

* Edit existing password

Note: This iteration is completely optional for reasons being that the Identity Provider from Dex acts as a fallback for
Kubernetes Administrators who do not want to use an external Identity Provider(mostly because they have a very small
user store).

3.1. Architecture Documents 113

MetalK8s

Documentation

In the Operational Guide:

¢ Document the predefined Dex roles (Cluster Admin, Solution Admin, Read Only), their access levels and how
to create them.

* Document how to create users and the secrets associated to them.
* Document how to integrate Dex with external Identity Providers such as LDAP and Microsoft Active Directory.
In the Installation/Quickstart Guide

* Document how to setup/change the superuser password

Test Plan

We could add some automated end-to-end tests for Dex user creation, and deletion using the CLI and then setup a
mini-lab on scality cloud to try out the UI integration.

3.1.5 Centralized CLI

Context
MetalK8s comes with a set of services to operate and monitor the K8s cluster. All operations that need to be performed
by the Platform Administrator could be categorized as follow:

* Cluster Resources Administration (Nodes, Volumes, Deployments, ...)

¢ Cluster Administration (Install, Upgrade, Downgrade, Backup, Restore, ...)

* Solution Administration (CRUD Environment, Import/Remove Solution, ...)

* Cluster Service Administration (Configure Dex, Prometheus, Alert Manager, ...)

K8s provides the kubectl CLI, enabling all kind of interactions with all Kubernetes resources, through k8s apiserver, but
its usage often requires to build verbose YAML files. Also it does not leverage everything MetalK8s exposes through
the salt APIL. It is shipped as an independent package and can be deployed and run from anywhere, on any OS.

Currently, MetalK8s provides other set of scripts or manual procedures, but those are located in various locations, their
usage may vary and they are not developed using the same logic.

This makes the CLI and associated documentation not super intuitive and it also makes the maintenance more expensive
in the long term.

The goal of the project is to provide MetalK8s administrator with an intuitive and easy to use set of tools in order to
administrate and operate a finite set of functionalities.

Because kubectl is already in place and is well known by Kubernetes administrators, it will be used as a standard to
follow, as much as possible, for all other MetalK8s CLIs:

» CLI provides an exhaustive help, per action, with relevant examples
* CLI provides <action> help when the command is not valid

* CLlI is not interactive (except if password input is needed)

e CLI should not require password input

* CLI provides a dryrun mode for intrusive operations

» CLI provides a verbose (or debug) mode

114 Chapter 3. Developer Guide

MetalK8s

* CLI implementation relies on secure APIs

» CLI support action completion for easy discovery

* CLI output is standardized and human readable by default

¢ CLI output can be formatted in JSON or YAML
When it is possible, it would make sense to leverage kubectl plugin
Most functionalities are exposed through 2 distinct CLI:

* kubectl: enriched with metalk8s plugin, to interact with both k8s apiserver and salt API, and that can be executed
from outside of the cluster.

» metalk8sctl: a new CLI, exposing specific MetalK8s functionalities, that are not interacting with k8s apiserver,
and that must be executed on cluster node host.

Some cluster configurations will be achievable through documented procedures, such as changing one cluster server
hostname.

Other specific solution kubectl plugin may also be provided by a solution.

To know which command must be used, administrator will rely on MetalK8s documentation. Documentation will be
updated accordingly.

In order to operate the cluster with kubectl plugins from outside of the cluster, plugin binary will be available for
download from the bootstrap node or from MetalK8s release repository. The metalk8sctl and kubectl are deployed and
available by default on bootstrap nodes.

Requirements

Not listing all commands that are already available through kubectl. Only describing commands that are missing or
commands that can be simplified using new command line arguments.

Cluster Resources Administration

tool: kubectl metalk8s

action | resource type | resource id | parameters

create | node name ssh-user, hostname or ip, ssh port ssh-key-path, sudo-required, roles
deploy | node name... <dry-run>

create | volume name type, nodeName, storageClassName, <devicePath>, <size>, <labels>

Cluster Administration

tool: metalk8sctl

3.1. Architecture Documents 115

MetalK8s

Resource | action parameters

bootstrap deploy

archive import path_to_iso

archive get <name>

archive delete path_to_iso or path_to_mountpoint or name
cluster upgrade dest-version, <dry-run>

cluster downgrade | dest-version, <dry-run>

etcd health

bootstrap backup

bootstrap restore backup-file

Solution Administration

Note: Import and unimport of solution are done the same way as MetalK8s archive using metalk8sctl archive
import

tool: metalk8sctl

Resource | action parameters
solution activate name, version
solution deactivate | name

solution get <name>, <version>

tool: kubectl metalk8s

action | resource type | parameters

create environment name, <description>, <namespace>

delete | environment name, <namespace>

get environment <name>

add solution name, version, environment, <namespace>
delete | solution name, environment, <namespace>

get solution <name>, environment

Cluster Service Administration

tool: kubectl metalk8s

action resource type resource id | parameters

The following edit commands are doing both configuration update and applying the configuration.
edit grafana-config name open an editor
edit am-config name open an editor
edit prom-config name open an editor
edit dex-config name open an editor

116 Chapter 3. Developer Guide

MetalK8s

Design Choices

Two distinct CLI:
* ametalk8s kubectl plugin with subcommands to interact with Kubernetes API, and Salt API if needed.

e ametalk8sctl CLI with subcommands for action that need to interact with the local machine, but may also
interact with Kubernetes API and Salt API if needed.

metalk8s kubectl plugin
Language

Go is chosen as the language for kubectl plugin for the following reasons:
* Great interactions with Kubernetes API.
* Often used for operators and kubectl plugins (Sample CLI plugin, Helpers for kubectl plugins).
* Easy to ship because it’s a statically compiled binary, no deps to provide.

» Simple deployment (no real requirements), just drop a binary in the PATH.

Input and Output

Each command should follow the kubectl style and standard as much as possible:

e Command style:

kubectl metalk8s <action> <resource>

¢ Interactive:

No interaction with the user, except when it’s an edit command an editor is opened (if needed) and when a
password is required a prompt appears to ask it.

* Output style:
Default human-readable output (<object> <action>ed).

A --output, -o option to change output format, at least support for json and yaml (jsonpath and
go-template when it’s possible).

Internally each action result should be an “object” (e.g.: single-level dictionary) containing several informations,
at least:

— name

message

result (True or False)

an elapsed time (to know each action time)
A --verbose, -v option to change log level verbosity (default output to stderr), using Kubernetes log library.

By default each command will wait for a result but, when it’s possible, a --async option should allow to do not
wait for a result and just output an ID (e.g.: Job ID for Salt) that can be used to watch for the result.

3.1. Architecture Documents 117

https://github.com/kubernetes/sample-cli-plugin
https://github.com/kubernetes/cli-runtime
https://github.com/kubernetes/klog

MetalK8s

SaltAPI interaction

If the plugin needs to access Salt API then it should use the service proxy http://<apiserver_host>/api/v1l/
namespaces/kube-system/services/https:salt-master:api/proxy/.

For each and every Salt API call plugin will need authentication on apiserver to access the Salt API service proxy and
also to Salt APL

Note: Right now, Salt API only accepts authentication using Bearer token, but in kubeconfig we could have certificates
authentication so this kind of kubeconfig will not work with this kubectl plugin.

Add support for certificates based authentication in Salt API look quite hard and costly.

Deployment
Plugin should be developed as one single binary kubectl-metalk8s available from the ISO, easy buildable from
GitHub repository and also as a System Package for Operating System supported by MetalK8s.

The package should install the plugin in /usr/bin directory by default.
This package should be installed on the bootstrap node by default.

Rejected design choice

» Bash kubectl plugin: Bash is great to do simple actions but not when you need to do interaction with some API
like Kubernetes API or Salt APIL.

¢ Python kubectl plugin: Python allows us to do complicated actions and great interactions with APIs but inter-
actions between Go and Kubernetes are much easier, given the large number of example available.

metalk8sctl CLI
Language

Python is chosen as the language for metalk8sctl for the following reasons:
* Ability to interact with Salt Python client API.

* Python installation needed anyway by Salt-minion.

Note: Python version 3 will be used as version 2 is end of life since beginning of 2020.

118 Chapter 3. Developer Guide

https://docs.saltstack.com/en/latest/ref/clients/index.html

MetalK8s

Input and Output

¢ Command style:

metalk8sctl <resource> <action>

* Interactive:
Never.
e Qutput style:
Human readable output, do not necessarily need for “machine output” like JSON and YAML.

The output should display useful information from Salt returns when needed, and in case of error, only show
relevant error message(s) from Salt.

Salt interaction

All Salt interaction should be done using Salt Python client API and not use the salt-call, salt, salt-run binary
at all.

This Salt Python client APT allows us to interact with Salt-master directly from the host machine as Python API directly
acts on the Salt sockets and does not need to execute a command inside the Salt-master container.

Deployment

metalk8sctl should be available from the ISO and also as a System Package for Operating System supported by
MetalK8s.

This package should be installed on the bootstrap node automatically after a fresh install.

As this CLI is used to do the first bootstrap deployment we will need another script (likely bash) to configure local
repositories and install metalk8sctl package with all dependencies.

Note: This CLI cannot run from outside of the cluster and need to have root access on the machine to run.

That’s why this CLI do not need any specific authentication on the cluster itself, interaction with all machines will be
done using Salt.

Rejected design choice

* bash MetalK8s CLI: Bash is great to do simple actions but not when you need to do interaction with Salt, Salt
API, and Kubernetes API.

* Do not follow kubectl style for the command (<action> <resource>), it does not make sense to regroup
command per action as actions are really different and this CLI only manages a few resources.

3.1. Architecture Documents 119

https://docs.saltstack.com/en/latest/ref/clients/index.html
https://docs.saltstack.com/en/latest/ref/clients/index.html

MetalK8s

Implementation Details

Two different projects that can be started in parallel.

First have a simple framework to implement a simple command, then each command would update the framework if
needed.

Check Requirements for a full list of commands.

Documentation
All command should be documented in the Operational Guide with a reference to it when it’s needed in the Installation
Guide.

All commands and sub-commands should have a --help option to explain a bit of usage of this specific command and
available options.

Test plan

For metalk8sctl:

* Add unit tests for internal functions using Pytest

* Most of the command are already used during functional test (some may need to be added in PyTest BDD)
For metalk8s kubectl plugin:

* Add unit tests for internal functions using Golang testing framework

¢ Add functional test for all plugin commands in PyTest BDD

3.1.6 Continuous Testing

This document will not describe how to write a test but just the list of tests that should be done and when.
The goal is to:

* have day-to-day development and PRs merged faster

* have a great test coverage
Lets define 2 differents stages of continuous testing:

* Pre-merge: Run during development process on changes not yet merged

* Post-merge: Run on changes already approved and merged in development branches

Pre-merge

What should be tested in pre-merge on every branch used during development (user/*, feature/*, improvement/*,
bugfix/*, w/*). The pre-merge test should not long too much time (less than 40 minutes is great) so we can’t test
everything in pre-merge, we should only test building of the product and check that product still usable.

* Building tests
— Build
— Lint

— Unit tests

120 Chapter 3. Developer Guide

https://golang.org/pkg/testing/

MetalK8s

* Installation tests
— Simple install RHEL
— Simple install CentOs + expansion

When merging several pull requests at the same time, given that we are on a queue branch (q/*), we may require
additional tests as a combination of several PRs could have a larger impact than all individual PR:

» Simple upgrade/downgrade

Post-merge

On each and every development/2.* branches we want to run complex tests, that take more time or need more
ressources than classic tests that run during pre-merge, to ensure that the current product continues to work well.

Nightly

» Upgrade, downgrade tests:
— For previous development branch

e.g.: on development/2.x test upgrade from development/2. (x-1) and downgrade to development/
2.(x-1)

* Build branch development/2. (x-1) (or retrieve it if available)
% Tests:
- Single node test
- Complex deployment test
— For last released version of current minor

e.g.: on development/2.x when developing “2.x.y-dev” test upgrade from metalk8s-2.x.(y-1) and
downgrade to metalk8s-2.x. (y-1)

% Single node test
% Complex deployment test
— For last released version of previous minor

e.g.: on development/2.x when developing “2.x.y-dev” test upgrade from metalk8s-2.(x-1).z and
downgrade to metalk8s-2. (x-1) .z where “2.(x-1).z” is the last patch released version for “2.(x-1)” (z
may be different from y)

% Single node test
% Complex deployment test
* Backup, restore tests:

— Environment with at least 3-node etcd cluster, destroy the bootstrap node and spawning a new fresh node
for restoration

— Environment with at least 3-node etcd cluster, destroy the bootstrap node and use one existing node for
restoration

¢ Solutions tests

Note: Complex deployment is (to be validated):

3.1. Architecture Documents 121

MetalK8s

* 1 bootstrap

* 1 etcd and control

* 1 etcd and control and workload
* 1 workload and infra

* 1 workload

e 1 infra

Weekly

More complex tests:
¢ Performance/conformance tests
* Validation of contrib tooling (Heat, terraform, ...)
« Installation of “real” Solution (Zenko, ...)

* Long lifecycle metalk8s tests (several upgrade, downgrade, backup/restore, expansions, ...)

Adaptive test plan

CI pre-merge may be more flexible by including some logic about the content of the changeset.
The goal here is to test only what needed according to the content of the commit.
For example:

» For a commit that changes uniquely documentation, we don’t need to run the entire installation test suite but
rather run tests related to documentation.

» For a commit touching upgrade orchestrate we want to test upgrade directly in pre-merge and not wait Post merge
build to get the test result.

3.1.7 Cluster and Services Configurations and Persistence
Context

MetalK8s comes with a set of tools and services that may need to be configured on site. At the same time, we don’t
want the administrator of the cluster to master each and every service of the cluster. We also don’t want to allow all
kind of configurations since it would make the system even more complex to test and maintain over time.

In addition to those services, MetalK8s deployment may have to be adapted depending on the architecture of the
platform or depending on the different use cases and applications running on top of it.

It can be:
* The BootstrapConfig,
* The various roles and taints we set on the node objects of the cluster

» The configurations associated to solutions, such as the list of available solutions, the environments and names-
paces created for a solution

Be it services or MetalK8s configurations, we need to ensure it is persisted and resilient to various type of events such
as node reboot, upgrade, downgrade, backup, restore.

122 Chapter 3. Developer Guide

MetalK8s

Requirements

User Stories
Available Settings

As a cluster administrator, I have access to a finite list of settings I can customize on-site in order to match with my
environment specificities:

* List of static users and credentials configured in Dex

* Integration with an external IDP configuration in Dex

* Existing Prometheus rules edition and new rules addition

* Alert notifications configuration in Alert Manager

* New Grafana dashboards or new Grafana datasources

* Number of replicas for the Prometheus, Alert Manager, Grafana or Dex deployments
* Changing the path on which the MetalK8s Ul is deployed

* Modifying OIDC provider, client ID or scopes

¢ Adding custom menu entries

Note: Other items will appear as we add new configurable features in MetalK8s

Settings Documentation

As a cluster administrator, I have access to a documented list of settings I can configure in the Operational Guide.

Persistence of Configurations

As a cluster administrator, I can upgrade or downgrade my cluster without losing any of the customised settings de-
scribed above.

Backup and Restoration

As a cluster administrator, when I am doing a backup of my cluster, I backup all the customised settings described
above and I can restore it when restoring the MetalK8s cluster or I can re apply part or all of it on a fresh new cluster.

3.1. Architecture Documents 123

MetalK8s

Expert-mode Access

As a MetalK8s expert, I can use kubectl command(s) in order to edit all settings that are exposed. The intent is to have
a method / API that an expert could use, if the right CLI tool or GUI is not available or not functioning as expected.

Design Choices
ConfigMap is chosen as a unified data access and storage media for cluster and service configurations in a MetalK8s
cluster based on the above requirements for the following reasons:

* Ability to support Update operations on ConfigMaps with CLI and UI easily using our already existing python
kubernetes module.

* Guarantee of adaptability and ease of changing the design and implementation in cases where customer needs
evolve rapidly.

» ConfigMaps are stored in the efcd database which is generally being backed up. This ensures that user settings
cannot be lost easily.

How it works

During Bootstrap, Upgrade or Downgrade stages, when we are assertive that the K8s cluster is fully ready and available
we could perform the following actions:

* Firstly, create and deploy ConfigMaps that will hold customizable cluster and service configurations. These
ConfigMaps should define an empty config.yaml in the data section of the ConfigMap for later use.

A standard layout for each customizable field could be added in the documentation to assist MetalK8s adminis-
trator in adding and modifying customizations.

To simplify the customizing efforts required from MetalK8s administrators, each customizable ConfigMap will
include an example section with inline documented directives that highlight how users should add, edit and
remove customizations.

* In an Addon config file for example; salt/metalkSs/addons/prometheus-operator/config/alertmanager.yaml, de-
fine the keys and values for default service configurations in a YAML structured format.

— The layout of service configurations within this file could follow the format:

Configuration of the Alertmanager service
apiVersion: addons.metalk8s.scality.com/vlalphal
kind: AlertmanagerConfig
spec:
Configure the Alertmanager Deployment
deployment:
replicas: 1

¢ During Addon manifest rendering, call a Salt module that will merge the configurations defined within the cus-
tomizable ConfigMap to those defined in alertmanager.yaml using a Salt merge strategy.

Amongst other merge technique such as aggregate, overwrite, list, the recurse merge technique is chosen to
merge the two data structures because it allows deep merging of python dict objects while being able to support
the aggregation of list structures within the python object.

Aggregating list structures is particularly useful when merging the pre-provisioned Dex static users found in the
default configurations to those newly defined by Administrators especially during upgrade. Without support for
list merge, pre-provisioned Dex static users will be overwritten during merge time.

124 Chapter 3. Developer Guide

MetalK8s

Recurse merge strategy example:
Merging the following structures using salt.utils.dictupdate.merge:

— Object (a) (MetalK8s defaults):

apiVersion: addons.metalk8s.scality.com/vlalphal
kind: AlertmanagerConfig
spec:
deployment:
replicas: 1

— Object (b) (User-defined configurations from ConfigMap):

apiVersion: addons.metalk8s.scality.com/vlalphal
kind: AlertmanagerConfig
spec:
deployment:
replicas: 2
notification:
config:
global:
resolve_timeout: 5m

— Result of Salt recurse merge:

apiVersion: addons.metalk8s.scality.com/vlalphal
kind: AlertmanagerConfig
spec:
deployment:
replicas: 2
notification:
config:
global:
resolve_timeout: 5m

The resulting configuration (a python object) will be used to populate the desired configuration fields within each
Addon chart at render time.

The above approach is flexible and fault tolerant because in a MetalK8s cluster, once the user-defined ConfigMaps are
absent or empty during Addon deployment, merging will yield no changes and we can effectively use default values
packaged alongside each MetalK8s Addon to run the deployment.

Using Salt states

Once a ConfigMap is updated by the user (say a user changes the number of replicas for Prometheus deployments to a
new value), then perform the following actions:

* Apply a Salt state that reads the ConfigMap object, validates the schema and checks the new values passed and
re-applies this configuration value to the deployment in question.

» Restart the Kubernetes deployment to pickup newly applied service configurations.

3.1. Architecture Documents 125

MetalK8s

Storage format

A YAML (K8s-like) format was chosen to represent the data field instead of a flat key-value structure for the following
reasons:

* YAML formatted configurations are easy to write and understand hence it will be simpler for users to edit con-
figurations.

¢ The YAML format benefits from bearing a schema version, which can be checked and validated against a version
we deploy.

* YAML is a format for describing hierarchical data structures, while using a flat key-value format would require
a form of encoding (and then, decoding) of this hierarchical structure.

A sample ConfigMap can be defined with the following fields.

apiVersion: vl
kind: ConfigMap
metadata:
namespace: <namespace>
name: <config-name>
data:
config.yaml: |-

Use case 1:

Configure and store the number of replicas for service specific Deployments found in the metalk8s-monitoring names-
pace using the ConfigMap format.

apiVersion: v1
kind: ConfigMap
metadata:
namespace: meta