
MetalK8s Documentation

Scality

Apr 07, 2021

CONTENTS:

I Installation 1

1 Introduction 5

2 Prerequisites 13

3 Deployment of the Bootstrap node 17

4 Enable IP-in-IP Encapsulation 21

5 Cluster expansion 23

6 Post-Installation Procedure 29

7 Accessing Cluster Services 35

8 Advanced guide 37

9 Troubleshooting 39

II Operation 41

10 Cluster Monitoring 45

11 Account Administration 49

12 Cluster and Services Configurations 55

13 Volume Management 71

14 Cluster Upgrade 77

15 Cluster Downgrade 79

16 Disaster Recovery 81

17 Solution Deployment 83

18 Changing the hostname of a MetalK8s node 85

19 Using the metalk8s-utils Image 87

20 Listening Processes 89

21 Troubleshooting 91

i

III Developer Guide 95

22 Architecture Documents 97

23 How to build MetalK8s 163

24 How to run components locally 167

25 Deploy new MetalK8s image 171

26 Development 173

27 Integrating with MetalK8s 205

IV Glossary 217

Index 221

ii

Part I

Installation

1

MetalK8s Documentation

This guide describes how to set up a MetalK8s cluster. It offers general requirements and describes
sizing, configuration, and deployment. It also explains major concepts central to MetalK8s architecture,
and shows how to access various services after completing the setup.

3

https://github.com/scality/metalk8s/

MetalK8s Documentation

4

CHAPTER

ONE

INTRODUCTION

1.1 Foreword

MetalK8s is a Kubernetes distribution with a number of add-ons selected for on-premises deployments,
including pre-configured monitoring and alerting, self-healing system configuration, and more.

Installing a MetalK8s cluster can be broken down into the following steps:

1. Setup of the environment

2. Deployment of the Bootstrap node, the first machine in the cluster

3. Expansion of the cluster, orchestrated from the Bootstrap node

4. Post installation configuration steps and sanity checks

Warning: MetalK8s is not designed to handle world-distributed multi-site architectures. Instead,
it provides a highly resilient cluster at the datacenter scale. To manage multiple sites, look into
application-level solutions or alternatives from such Kubernetes community groups as the Multicluster
SIG).

1.2 Choosing a Deployment Architecture

Before starting the installation, it’s best to choose an architecture.

1.2.1 Standard Architecture

The recommended architecture when installing a small MetalK8s cluster emphasizes ease of installation,
while providing high stability for scheduled workloads. This architecture includes:

• One machine running Bootstrap and control plane services

• Two other machines running control plane and infra services

• Three more machines for workload applications

5

https://kubernetes.io/
https://github.com/kubernetes/community/tree/master/sig-multicluster
https://github.com/kubernetes/community/tree/master/sig-multicluster

MetalK8s Documentation

Machines dedicated to the control plane do not require many resources (see the sizing notes below), and
can safely run as virtual machines. Running workloads on dedicated machines makes them simpler to
size, as MetalK8s impact will be negligible.

Note: “Machines” may indicate bare-metal servers or VMs interchangeably.

1.2.2 Extended Architecture

This example architecture focuses on reliability rather than compactness, offering the finest control over
the entire platform:

• One machine dedicated to running Bootstrap services (see the Bootstrap role definition below)

• Three extra machines (or five if installing a really large cluster, e.g. > 100 nodes) for running the
Kubernetes control plane (with core K8s services and the backing etcd DB)

• One or more machines dedicated to running infra services (see the infra role)

• Any number of machines dedicated to running applications, the number and sizing depending on
the application (for instance, Zenko recommends three or more machines)

6 Chapter 1. Introduction

https://kubernetes.io/
https://zenko.io/

MetalK8s Documentation

1.2.3 Compact Architectures

Although its design is not focused on having the smallest compute and memory footprints, MetalK8s
can provide a fully functional single-node “cluster”. The bootstrap node can be configured to also allow
running applications next to all other required services (see the section about taints below).

Because a single-node cluster has no resilience to machine or site failure, a three-machine cluster is the
most compact recommended production architecture. This architecture includes:

• Two machines running control plane services alongside infra and workload applications

• One machine running bootstrap services and all other services

Note: Sizing for such compact clusters must account for the expected load. The exact impact of
colocating an application with MetalK8s services must be evaluated by that application’s provider.

1.2.4 Variations

You can customize your architecture using combinations of roles and taints, described below, to adapt to
the available infrastructure.

Generally, it is easier to monitor and operate well-isolated groups of machines in the cluster, where
hardware issues only impact one group of services.

You can also evolve an architecture after initial deployment, if the underlying infrastructure also evolves
(new machines can be added through the expansion mechanism, roles can be added or removed, etc.).

1.3 Concepts

Although familiarity with Kubernetes concepts is recommended, the necessary concepts to grasp before
installing a MetalK8s cluster are presented here.

1.3.1 Nodes

Nodes are Kubernetes worker machines that allow running containers and can be managed by the cluster
(see control plane services, next section).

1.3. Concepts 7

https://kubernetes.io/docs/concepts/

MetalK8s Documentation

1.3.2 Control and Workload Planes

The distinction between the control and workload planes is central to MetalK8s, and often referred to in
other Kubernetes concepts.

The control plane is the set of machines (called “nodes”) and the services running there that make up the
essential Kubernetes functionality for running containerized applications, managing declarative objects,
and providing authentication/authorization to end users as well as services. The main components of a
Kubernetes control plane are:

• API Server

• Scheduler

• Controller Manager

The workload plane is the set of nodes in which applications are deployed via Kubernetes objects,
managed by services in the control plane.

Note: Nodes may belong to both planes, so that one can run applications alongside the control plane
services.

Control plane nodes often are responsible for providing storage for API Server, by running etcd. This
responsibility may be offloaded to other nodes from the workload plane (without the etcd taint).

1.3.3 Node Roles

A node’s responsibilities are determined using roles. Roles are stored in Node manifests using labels of
the form node-role.kubernetes.io/<role-name>: ''.

MetalK8s uses five different roles, which may be combined freely:

node-role.kubernetes.io/master The master role marks a control plane member. Control plane services
can only be scheduled on master nodes.

node-role.kubernetes.io/etcd The etcd role marks a node running etcd for API Server storage.

node-role.kubernetes.io/infra The infra role is specific to MetalK8s. It marks nodes where non-
critical cluster services (monitoring stack, UIs, etc.) are running.

node-role.kubernetes.io/bootstrap This marks the Bootstrap node. This node is unique in the cluster,
and is solely responsible for the following services:

• An RPM package repository used by cluster members

• An OCI registry for Pod images

• A Salt Master and its associated SaltAPI

In practice, this role is used in conjunction with the master and etcd roles for bootstrapping the
control plane.

In the architecture diagrams presented above, each box represents a role (with the node-role.
kubernetes.io/ prefix omitted).

8 Chapter 1. Introduction

MetalK8s Documentation

1.3.4 Node Taints

Taints are complementary to roles. When a taint or a set of taints is applied to a Node, only Pods with
the corresponding tolerations can be scheduled on that Node.

Taints allow dedicating Nodes to specific use cases, such as running control plane services.

Refer to the architecture diagrams above for examples: each T marker on a role means the taint corre-
sponding to this role has been applied on the Node.

Note that Pods from the control plane services (corresponding to master and etcd roles) have tolerations
for the bootstrap and infra taints. This is because after bootstrapping the first Node, it will be configured
as follows:

The taints applied are only tolerated by services deployed by MetalK8s. If the selected architecture
requires workloads to run on the Bootstrap node, these taints must be removed.

To do this, use the following commands after deployment:

root@bootstrap $ kubectl taint nodes <bootstrap-node-name> \
node-role.kubernetes.io/bootstrap:NoSchedule-

root@bootstrap $ kubectl taint nodes <bootstrap-node-name> \
node-role.kubernetes.io/infra:NoSchedule-

Note: To get more in-depth information about taints and tolerations, see the official Kubernetes docu-
mentation.

1.3. Concepts 9

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

MetalK8s Documentation

1.3.5 Networks

A MetalK8s cluster requires a physical network for both the control plane and the workload plane Nodes.
Although these may be the same network, the distinction will still be made in further references to these
networks, and when referring to a Node IP address. Each Node in the cluster must belong to these two
networks.

The control plane network enables cluster services to communicate with each other. The workload plane
network exposes applications, including those in infra Nodes, to the outside world.

MetalK8s also enables configuring virtual networks for internal communication:

• A network for Pods, defaulting to 10.233.0.0/16

• A network for Services, defaulting to 10.96.0.0/12

In case of conflicts with existing infrastructure, choose other ranges during Bootstrap configuration.

1.4 Additional Notes

1.4.1 Sizing

Sizing the machines in a MetalK8s cluster depends on the selected architecture and anticipated changes.
Refer to the documentation of the applications planned to run in the deployed cluster before completing
the sizing, as their needs will compete with the cluster’s.

Each role, describing a group of services, requires a certain amount of resources to run properly. If
multiple roles are used on a single Node, these requirements add up.

Role Services CPU RAM Required Storage Recom-
mended
Storage

bootstrap Package repositories,
container registries, Salt
master

1
core

2
GB

Sufficient space for the prod-
uct ISO archives

etcd etcd database for the
K8s API

0.5
core

1
GB

1 GB for /var/lib/etcd

master K8s API, scheduler, and
controllers

0.5
core

1
GB

infra Monitoring services,
Ingress controllers

0.5
core

2
GB

10 GB partition for
Prometheus 1 GB parti-
tion for Alertmanager

requirements
common to any
Node

Salt minion, Kubelet 0.2
core

0.5
GB

40 GB root partition 100 GB or
more for
/var

These numbers do not account for highly unstable workloads or other sources of unpredictable load on
the cluster services. Providing a safety margin of an additional 50% of resources is recommended.

Consider the official recommendations for etcd sizing, as the stability of a MetalK8s installation depends
on the stability of the backing etcd (see the etcd section for more details). Prometheus and Alertmanager
also require storage, as explained in Provision Storage for Services.

10 Chapter 1. Introduction

https://github.com/etcd-io/etcd/blob/master/Documentation/op-guide/hardware.md

MetalK8s Documentation

1.4.2 Deploying with Cloud Providers

When installing in a virtual environment, such as AWS EC2 or OpenStack, adjust network configurations
carefully: virtual environments often add a layer of security at the port level, which must be disabled or
circumvented with IP-in-IP encapsulation.

Also note that Kubernetes has numerous integrations with existing cloud providers to provide easier
access to proprietary features, such as load balancers. For more information, review this topic.

1.4. Additional Notes 11

https://aws.amazon.com/ec2/
https://www.openstack.org/
https://kubernetes.io/docs/concepts/cluster-administration/cloud-providers/

MetalK8s Documentation

12 Chapter 1. Introduction

CHAPTER

TWO

PREREQUISITES

MetalK8s clusters require machines running CentOS/RHEL 7.6 or higher as their operating system. These
machines may be virtual or physical, with no difference in setup procedure. The number of machines to
set up depends on the architecture you chose in Choosing a Deployment Architecture.

Machines must not be managed by any configuration management system, such as SaltStack or Puppet.

Warning: The distribution must be left intact as much as possible (do not tune, tweak,
or configure it, or install any software).

2.1 Proxies

For nodes operating behind a proxy, see Configuration.

2.2 Linux Kernel Version

Linux kernels shipped with CentOS/RHEL 7 and earlier are affected by a cgroups memory leak bug.

This bug was fixed in kernel 3.10.0-1062.4.1. Use this kernel version or later.

The version can be retrieved using:

$ uname -r

If the installed version is lower than the one above, upgrade it with:

$ yum upgrade -y kernel-3.10.0-1062.4.1.el7
$ reboot

These commands may require sudo or root access.

2.3 Provisioning

2.3.1 SSH

Each machine must be accessible through SSH from the host. Bootstrap node deployment generates a new
SSH identity for the Bootstrap node and shares it with other nodes in the cluster. You can also do this
manually beforehand.

13

https://github.com/scality/metalk8s
https://www.centos.org
https://access.redhat.com/products/red-hat-enterprise-linux
https://www.saltstack.com
https://puppet.com

MetalK8s Documentation

2.3.2 Network

Each machine must be a member of both the control plane and workload plane networks described in
Networks. However, these networks can overlap, and nodes do not need distinct IP addresses for each
plane.

For the host to reach the cluster-provided UIs, it must be able to connect to the machines’ control plane
IP addresses.

2.3.3 Repositories

Each machine must have properly configured repositories with access to basic repository packages (de-
pending on the operating system).

CentOS:

• base

• extras

• updates

RHEL:

• rhel-7-server-rpms

• rhel-7-server-extras-rpms

• rhel-7-server-optional-rpms

Note: RHEL instances must be registered.

Note: Repository names and configurations do not need to be the same as the official ones, but all
packages must be made available.

To enable an existing repository:

CentOS:

yum-config-manager --enable <repo_name>

RHEL:

subscription-manager repos --enable=<repo_name>

To add a new repository:

yum-config-manager --add-repo <repo_url>

Note: repo_url can be set to a remote URL using the prefix http://, https://, ftp://, etc., or
to a local path using file://.

For more, review the official Red Hat documentation:

• Enable Optional repositories with RHSM

• Configure repositories with YUM

• Advanced repositories configuration

14 Chapter 2. Prerequisites

https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/392003
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sec-configuring_yum_and_yum_repositories#sec-Managing_Yum_Repositories
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sec-configuring_yum_and_yum_repositories#sec-Setting_repository_Options

MetalK8s Documentation

2.3.4 etcd

For production environments, a block device dedicated to etcd is recommended for better performance
and stability. With lower write latency and less variance than spinning disks, SSDs are recommended to
improve reliability.

The device must be formatted and mounted on /var/lib/etcd, on Nodes intended to bear the etcd role.

For more on etcd’s hardware requirements, see the official documentation.

2.3. Provisioning 15

https://etcd.io/docs/v3.3.12/op-guide/hardware

MetalK8s Documentation

16 Chapter 2. Prerequisites

CHAPTER

THREE

DEPLOYMENT OF THE BOOTSTRAP NODE

3.1 Preparation

1. Retrieve a MetalK8s ISO (you may build one yourself by following our developer guide). Scality
customers can retrieve validated builds as part of their license from the Scality repositories.

2. Download the MetalK8s ISO file on the machine that will host the bootstrap node. Run checkisomd5
–verbose <path-to-iso> to validate its integrity (checkisomd5 is part of the isomd5sum package).

3. Mount this ISO file at the path of your choice (we will use /srv/scality/metalk8s-|version| for
the rest of this guide, as this is where the ISO will be mounted automatically after running the
bootstrap script):

root@bootstrap $ mkdir -p /srv/scality/metalk8s-2.9.0-alpha1
root@bootstrap $ mount <path-to-iso> /srv/scality/metalk8s-2.9.0-alpha1

3.2 Configuration

1. Create the MetalK8s configuration directory.

root@bootstrap $ mkdir /etc/metalk8s

2. Create the /etc/metalk8s/bootstrap.yaml file. This file contains initial configuration settings
which are mandatory for setting up a MetalK8s Bootstrap node. Change the networks, IP address,
and hostname fields to conform to your infrastructure.

apiVersion: metalk8s.scality.com/v1alpha3
kind: BootstrapConfiguration
networks:

controlPlane:
cidr: <CIDR-notation>

workloadPlane:
cidr: <CIDR-notation>
mtu: <network-MTU>

pods: <CIDR-notation>
services: <CIDR-notation>

proxies:
http: <http://proxy-ip:proxy-port>
https: <https://proxy-ip:proxy-port>
no_proxy:
- <host>
- <ip/cidr>

ca:
minion: <hostname-of-the-bootstrap-node>

archives:
- <path-to-metalk8s-iso>

17

mailto:root@bootstrap
mailto:root@bootstrap

MetalK8s Documentation

The networks field specifies a range of IP addresses written in CIDR notation for it’s various subfields.

The controlPlane and workloadPlane entries are mandatory. These values specify the range
of IP addresses that will be used at the host level for each member of the cluster.

Note: Several CIDRs can be provided if all nodes do not sit in the same network. This is an
advanced configuration which we do not recommend for non-experts.

For workloadPlane entry an MTU can also be provided, this MTU value should be the lowest
MTU value accross all the workload plane network. The default value for this MTU is 1460.

networks:
controlPlane:

cidr: 10.200.1.0/28
workloadPlane:
cidr: 10.200.1.0/28
mtu: 1500

All nodes within the cluster must connect to both the control plane and workload plane
networks. If the same network range is chosen for both the control plane and workload
plane networks then the same interface may be used.

The pods and services fields are not mandatory, though can be changed to match the con-
straints of existing networking infrastructure (for example, if all or part of these default
subnets is already routed). During installation, by default pods and services are set to the
following values below if omitted.

For production clusters, we advise users to anticipate future expansions and use sufficiently
large networks for pods and services.

networks:
pods: 10.233.0.0/16
services: 10.96.0.0/12

The proxies field can be omitted if there is no proxy to configure. The 2 entries http and https are used
to configure the containerd daemon proxy to fetch extra container images from outstide the MetalK8s
cluster. The no_proxy entry specifies IPs that should be excluded from proxying, it must be a list of hosts,
IP addresses or IP ranges in CIDR format. For example;

no_proxy:
- localhost
- 127.0.0.1
- 10.10.0.0/16
- 192.168.0.0/16

The archives field is a list of absolute paths to MetalK8s ISO files. When the bootstrap script is executed,
those ISOs are automatically mounted and the system is configured to re-mount them automatically after
a reboot.

3.3 SSH Provisioning

1. Prepare the MetalK8s PKI directory.

root@bootstrap $ mkdir -p /etc/metalk8s/pki

2. Generate a passwordless SSH key that will be used for authentication to future new nodes.

root@bootstrap $ ssh-keygen -t rsa -b 4096 -N '' -f /etc/metalk8s/pki/salt-bootstrap

18 Chapter 3. Deployment of the Bootstrap node

https://en.wikipedia.org/wiki/Maximum_transmission_unit

MetalK8s Documentation

Warning: Although the key name is not critical (will be re-used afterwards, so make sure
to replace occurences of salt-bootstrap where relevant), this key must exist in the /etc/
metalk8s/pki directory.

3. Accept the new identity on future new nodes (run from your host).

1. Retrieve the public key from the Bootstrap node.

user@host $ scp root@bootstrap:/etc/metalk8s/pki/salt-bootstrap.pub /tmp/salt-bootstrap.
→˓pub

2. Authorize this public key on each new node (this command assumes a functional SSH access
from your host to the target node). Repeat until all nodes accept SSH connections from the
Bootstrap node.

user@host $ ssh-copy-id -i /tmp/salt-bootstrap.pub root@<node_hostname>

3.4 Installation

3.4.1 Run the Installation

Run the bootstrap script to install binaries and services required on the Bootstrap node.

root@bootstrap $ /srv/scality/metalk8s-2.9.0-alpha1/bootstrap.sh

Warning: For virtual networks (or any network which enforces source and destination fields of IP
packets to correspond to the MAC address(es)), IP-in-IP needs to be enabled.

3.4.2 Validate the install

• Check that all Pods on the Bootstrap node are in the Running state. Note that Prometheus and
Alertmanager pods will remain in a Pending state until their respective persistent storage volumes
are provisioned.

Note: The administrator Kubeconfig file is used to configure access to Kubernetes when used with kubectl
as shown below. This file contains sensitive information and should be kept securely.

On all subsequent kubectl commands, you may omit the --kubeconfig argument if you have exported
the KUBECONFIG environment variable set to the path of the administrator Kubeconfig file for the cluster.

By default, this path is /etc/kubernetes/admin.conf.

root@bootstrap $ export KUBECONFIG=/etc/kubernetes/admin.conf

root@bootstrap $ kubectl get nodes --kubeconfig /etc/kubernetes/admin.conf
NAME STATUS ROLES AGE VERSION
bootstrap Ready bootstrap,etcd,infra,master 17m v1.15.5

root@bootstrap $ kubectl get pods --all-namespaces -o wide --kubeconfig /etc/kubernetes/admin.conf
NAMESPACE NAME READY STATUS ␣
→˓RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
kube-system calico-kube-controllers-7c9944c5f4-h9bsc 1/1 Running 0␣
→˓ 6m29s 10.233.220.129 bootstrap <none> <none>

(continues on next page)

3.4. Installation 19

mailto:root@bootstrap

MetalK8s Documentation

(continued from previous page)

kube-system calico-node-v4qhb 1/1 Running 0␣
→˓ 6m29s 10.200.3.152 bootstrap <none> <none>
kube-system coredns-ff46db798-k54z9 1/1 Running 0␣
→˓ 6m29s 10.233.220.134 bootstrap <none> <none>
kube-system coredns-ff46db798-nvmjl 1/1 Running 0␣
→˓ 6m29s 10.233.220.132 bootstrap <none> <none>
kube-system etcd-bootstrap 1/1 Running 0␣
→˓ 5m45s 10.200.3.152 bootstrap <none> <none>
kube-system kube-apiserver-bootstrap 1/1 Running 0␣
→˓ 5m57s 10.200.3.152 bootstrap <none> <none>
kube-system kube-controller-manager-bootstrap 1/1 Running 0␣
→˓ 7m4s 10.200.3.152 bootstrap <none> <none>
kube-system kube-proxy-n6zgk 1/1 Running 0␣
→˓ 6m32s 10.200.3.152 bootstrap <none> <none>
kube-system kube-scheduler-bootstrap 1/1 Running 0␣
→˓ 7m4s 10.200.3.152 bootstrap <none> <none>
kube-system repositories-bootstrap 1/1 Running 0␣
→˓ 6m20s 10.200.3.152 bootstrap <none> <none>
kube-system salt-master-bootstrap 2/2 Running 0␣
→˓ 6m10s 10.200.3.152 bootstrap <none> <none>
kube-system storage-operator-7567748b6d-hp7gq 1/1 Running 0␣
→˓ 6m6s 10.233.220.138 bootstrap <none> <none>
metalk8s-ingress nginx-ingress-control-plane-controller-5nkkx 1/1 Running 0␣
→˓ 6m6s 10.233.220.137 bootstrap <none> <none>
metalk8s-ingress nginx-ingress-controller-shg7x 1/1 Running 0␣
→˓ 6m7s 10.233.220.135 bootstrap <none> <none>
metalk8s-ingress nginx-ingress-default-backend-7d8898655c-jj7l6 1/1 Running 0␣
→˓ 6m7s 10.233.220.136 bootstrap <none> <none>
metalk8s-logging loki-0 0/1 Pending 0␣
→˓ 6m21s <none> <none> <none> <none>
metalk8s-monitoring alertmanager-prometheus-operator-alertmanager-0 0/2 Pending 0␣
→˓ 6m1s <none> <none> <none> <none>
metalk8s-monitoring prometheus-operator-grafana-775fbb5b-sgngh 2/2 Running 0␣
→˓ 6m17s 10.233.220.130 bootstrap <none> <none>
metalk8s-monitoring prometheus-operator-kube-state-metrics-7587b4897c-tt79q 1/1 Running 0␣
→˓ 6m17s 10.233.220.131 bootstrap <none> <none>
metalk8s-monitoring prometheus-operator-operator-7446d89644-zqdlj 1/1 Running 0␣
→˓ 6m17s 10.233.220.133 bootstrap <none> <none>
metalk8s-monitoring prometheus-operator-prometheus-node-exporter-rb969 1/1 Running 0␣
→˓ 6m17s 10.200.3.152 bootstrap <none> <none>
metalk8s-monitoring prometheus-prometheus-operator-prometheus-0 0/3 Pending 0␣
→˓ 5m50s <none> <none> <none> <none>
metalk8s-ui metalk8s-ui-6f74ff4bc-fgk86 1/1 Running 0␣
→˓ 6m4s 10.233.220.139 bootstrap <none> <none>

• From the console output above, Prometheus, Alertmanager and Loki pods are in a Pending state
because their respective persistent storage volumes need to be provisioned. To provision these
persistent storage volumes, follow this procedure.

• Check that you can access the MetalK8s GUI after the installation is completed by following this
procedure.

• At this stage, the MetalK8s GUI should be up and ready for you to explore.

Note: Monitoring through the MetalK8s GUI will not be available until persistent storage volumes
for both Prometheus and Alertmanager have been successfully provisioned.

• If you encounter an error during installation or have issues validating a fresh MetalK8s installation,
refer to the Troubleshooting section.

20 Chapter 3. Deployment of the Bootstrap node

CHAPTER

FOUR

ENABLE IP-IN-IP ENCAPSULATION

By default, Calico in MetalK8s is configured to use IP-in-IP encapsulation only for cross-subnet commu-
nication.

IP-in-IP is needed for any network which enforces source and destination fields of IP packets to corre-
spond to the MAC address(es).

To configure IP-in-IP encapsulation for all communications, run the following command:

$ kubectl --kubeconfig /etc/kubernetes/admin.conf \
patch ippool default-ipv4-ippool --type=merge \
--patch '{"spec": {"ipipMode": "Always"}}'

For more information refer to IP-in-IP Calico configuration.

21

https://docs.projectcalico.org/
https://en.wikipedia.org/wiki/IP_in_IP
https://en.wikipedia.org/wiki/IP_in_IP
https://en.wikipedia.org/wiki/IP_in_IP
https://docs.projectcalico.org/v3.7/networking/vxlan-ipip

MetalK8s Documentation

22 Chapter 4. Enable IP-in-IP Encapsulation

CHAPTER

FIVE

CLUSTER EXPANSION

Once the Bootstrap node has been installed (see Deployment of the Bootstrap node), the cluster can be
expanded. Unlike the kubeadm join approach which relies on bootstrap tokens and manual operations
on each node, MetalK8s uses Salt SSH to setup new Nodes through declarative configuration, from a
single entrypoint. This operation can be done either through the MetalK8s GUI or the command-line.

5.1 Defining an Architecture

Follow the recommendations provided in the introduction to choose an architecture.

List the machines to deploy and their associated roles, and deploy each of them using the following
process, either from the GUI or CLI. Note however, that the finest control over roles and taints can only
be achieved using the command-line.

5.2 Adding a Node with the MetalK8s GUI

To reach the UI, refer to this procedure.

5.2.1 Creating a Node Object

The first step to adding a Node to a cluster is to declare it in the API. The MetalK8s GUI provides a simple
form for that purpose.

1. Navigate to the Node list page, by clicking the button in the sidebar:

23

https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm-join/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping/

MetalK8s Documentation

2. From the Node list (the Bootstrap node should be visible there), click the button labeled “Create a
New Node”:

3. Fill the form with relevant information (make sure the SSH provisioning for the Bootstrap node is
done first):

• Name: the hostname of the new Node

• SSH User: the user for which the Bootstrap has SSH access

• Hostname or IP: the address to use for SSH from the Bootstrap

• SSH Port: the port to use for SSH from the Bootstrap

• SSH Key Path: the path to the private key generated in this procedure

• Sudo required: whether the SSH deployment will need sudo access

24 Chapter 5. Cluster expansion

MetalK8s Documentation

• Roles/Workload Plane: enable any workload applications run on this Node

• Roles/Control Plane: enable master and etcd services run on this Node

• Roles/Infra: enable infra services run on this Node

Note: Combination of multiple roles is possible: Selecting Workload Plane and Infra checkbox
will result in infra services and workload applications run on this Node.

4. Click Create. You will be redirected to the Node list page, and will be shown a notification to
confirm the Node creation:

5.2.2 Deploying the Node

After the desired state has been declared, it can be applied to the machine. The MetalK8s GUI uses
SaltAPI to orchestrate the deployment.

1. From the Node list page, click the Deploy button for any Node that has not yet been deployed.

Once clicked, the button changes to Deploying. Click it again to open the deployment status page:

Detailed events are shown on the right of this page, for advanced users to debug in case of errors.

5.2. Adding a Node with the MetalK8s GUI 25

MetalK8s Documentation

2. When deployment is complete, click Back to nodes list. The new Node should be in a Ready state.

5.3 Adding a Node from the Command-line

5.3.1 Creating a Manifest

Adding a node requires the creation of a manifest file, following the template below:

apiVersion: v1
kind: Node
metadata:
name: <node_name>
annotations:
metalk8s.scality.com/ssh-key-path: /etc/metalk8s/pki/salt-bootstrap
metalk8s.scality.com/ssh-host: <node control plane IP>
metalk8s.scality.com/ssh-sudo: 'false'
metalk8s.scality.com/ssh-user: 'root'

labels:
metalk8s.scality.com/version: '2.9.0-alpha1'
<role labels>

spec:
taints: <taints>

Annotations are used by Salt-SSH to connect to the node and deploy it. All annotations are prefixed with
metalk8s.scality.com/:

Anno-
tation

Description De-
fault

ssh-
host

Control plane IP of the node, must be accessible over SSH from the Bootstrap node None

ssh-
key-
path

Path to the private SSH key used to connect to the node None

ssh-
sudo

Whether to use sudo to execute commands or not (root privileges are needed to
deploy a node, it must be set to true if ssh-user is not root)

false

ssh-
user

User to connect to the node and run commands root

The combination of <role labels> and <taints> will determine what is installed and deployed on the
Node.

roles determine a Node responsibilities. taints are complementary to roles.

• A node exclusively in the control plane with etcd storage

roles and taints both are set to master and etcd. It has the same behavior as the Control Plane
checkbox in the GUI.

[. . .]
metadata:
[. . .]
labels:

node-role.kubernetes.io/master: ''
node-role.kubernetes.io/etcd: ''
[. . . (other labels except roles)]

spec:
[. . .]
taints:

(continues on next page)

26 Chapter 5. Cluster expansion

MetalK8s Documentation

(continued from previous page)

- effect: NoSchedule
key: node-role.kubernetes.io/master

- effect: NoSchedule
key: node-role.kubernetes.io/etcd

• A worker node dedicated to infra services (see Introduction)

roles and taints both are set to infra. It has the same behavior as the Infra checkbox in the GUI.

[. . .]
metadata:
[. . .]
labels:

node-role.kubernetes.io/infra: ''
[. . . (other labels except roles)]

spec:
[. . .]
taints:
- effect: NoSchedule

key: node-role.kubernetes.io/infra

• A simple worker still accepting infra services would use the same role label without the taint

roles are set to node and infra. It’s the same as the checkbox of Workload Plane and Infra in
MetalK8s GUI.

5.3.2 CLI-only actions

• A Node dedicated to etcd

roles and taints both are set to etcd.

[. . .]
metadata:
[. . .]
labels:

node-role.kubernetes.io/etcd: ''
[. . . (other labels except roles)]

spec:
[. . .]
taints:
- effect: NoSchedule

key: node-role.kubernetes.io/etcd

5.3.3 Creating the Node Object

Use kubectl to send the manifest file created before to Kubernetes API.

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf apply -f <path-to-node-manifest>
node/<node-name> created

Check that it is available in the API and has the expected roles.

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf get nodes
NAME STATUS ROLES AGE VERSION
bootstrap Ready bootstrap,etcd,infra,master 12d v1.11.7
<node-name> Unknown <expected node roles> 29s

5.3. Adding a Node from the Command-line 27

MetalK8s Documentation

5.3.4 Deploying the Node

Open a terminal in the Salt Master container using this procedure.

1. Check that SSH access from the Salt Master to the new node is properly configured (see SSH
Provisioning).

Note: Salt SSH requires Python 3 to be installed on the remote host to run Salt functions. It will
be installed automatically when deploying the node, though you can send raw shell commands
before (using --raw-shell) if needed.

root@salt-master-bootstrap $ salt-ssh --roster=kubernetes <node_name> --raw-shell 'echo OK'
<node_name>:

retcode:

0
stderr:

Warning: Permanently added '<ip>' (ECDSA) to the list of known hosts.
stdout:

OK

2. Start the node deployment.

root@salt-master-bootstrap $ salt-run state.orchestrate metalk8s.orchestrate.deploy_
→˓node \

saltenv=metalk8s-2.9.0-alpha1 \
pillar='{"orchestrate": {"node_name": "<node-name>"}}'

... lots of output ...
Summary for bootstrap_master

Succeeded: 7 (changed=7)
Failed: 0

Total states run: 7
Total run time: 121.468 s

5.4 Checking Cluster Health

During the expansion, it is recommended to check the cluster state between each node addition.

When expanding the control plane, one can check the etcd cluster health:

root@bootstrap $ kubectl -n kube-system exec -ti etcd-bootstrap sh --kubeconfig /etc/kubernetes/
→˓admin.conf
root@etcd-bootstrap $ etcdctl --endpoints=https://[127.0.0.1]:2379 \

--cacert=/etc/kubernetes/pki/etcd/ca.crt \
--cert=/etc/kubernetes/pki/etcd/healthcheck-client.crt \
--key=/etc/kubernetes/pki/etcd/healthcheck-client.key \
endpoint health --cluster

https://<first-node-ip>:2379 is healthy: successfully committed proposal: took = 16.285672ms
https://<second-node-ip>:2379 is healthy: successfully committed proposal: took = 43.462092ms
https://<third-node-ip>:2379 is healthy: successfully committed proposal: took = 52.879358ms

28 Chapter 5. Cluster expansion

mailto:root@salt\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{}master\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{}bootstrap

CHAPTER

SIX

POST-INSTALLATION PROCEDURE

6.1 Provision Storage for Services

After bootstrapping the cluster, the Prometheus and AlertManager services used to monitor the system
and the Loki service, used to aggregate the logs of the platform, will not be running (the respective Pods
will remain in Pending state), because they require persistent storage to be available.

You can either provision these storage volumes on the Bootstrap node, or later on other nodes joining the
cluster. It is even recommended to separate Bootstrap services from Infra services.

To create the required Volume objects, use one of the following volume type depending on the platform.

6.1.1 rawBlockDevice Volumes

Write a YAML file with the following contents, replacing:

• <node_name> with the name of the Node on which

• <device_path> with the /dev/ path for the partitions to use

apiVersion: storage.metalk8s.scality.com/v1alpha1
kind: Volume
metadata:
name: <node_name>-prometheus

spec:
nodeName: <node_name>
storageClassName: metalk8s
rawBlockDevice: # Choose a device with at least 10GiB capacity

devicePath: <device_path>
template:

metadata:
labels:

app.kubernetes.io/name: 'prometheus-operator-prometheus'

apiVersion: storage.metalk8s.scality.com/v1alpha1
kind: Volume
metadata:
name: <node_name>-alertmanager

spec:
nodeName: <node_name>
storageClassName: metalk8s
rawBlockDevice: # Choose a device with at least 1GiB capacity

devicePath: <device_path2>
template:

metadata:
labels:

app.kubernetes.io/name: 'prometheus-operator-alertmanager'

(continues on next page)

29

MetalK8s Documentation

(continued from previous page)

apiVersion: storage.metalk8s.scality.com/v1alpha1
kind: Volume
metadata:
name: <node_name>-loki

spec:
nodeName: <node_name>
storageClassName: metalk8s
rawBlockDevice: # Choose a device with at least 10GiB capacity

devicePath: <device_path3>
template:

metadata:
labels:

app.kubernetes.io/name: 'loki'

6.1.2 lvmLogicalVolume Volumes

Write a YAML file with the following contents, replacing:

• <node_name> with the name of the Node on which

• <vg_name> with the existing LVM VolumeGroup name on this specific Node

apiVersion: storage.metalk8s.scality.com/v1alpha1
kind: Volume
metadata:
name: <node_name>-prometheus

spec:
nodeName: <node_name>
storageClassName: metalk8s
lvmLogicalVolume:

vgName: <vg_name> # Choose an existing LVM VolumeGroup
size: 10Gi # Prometheus LogicalVolume should have at least 10GiB capacity

template:
metadata:

labels:
app.kubernetes.io/name: 'prometheus-operator-prometheus'

apiVersion: storage.metalk8s.scality.com/v1alpha1
kind: Volume
metadata:
name: <node_name>-alertmanager

spec:
nodeName: <node_name>
storageClassName: metalk8s
lvmLogicalVolume:

vgName: <vg_name> # Choose an existing LVM VolumeGroup
size: 10Gi # Alertmanager LogicalVolume should have at least 1GiB capacity

template:
metadata:

labels:
app.kubernetes.io/name: 'prometheus-operator-alertmanager'

apiVersion: storage.metalk8s.scality.com/v1alpha1
kind: Volume
metadata:
name: <node_name>-loki

spec:
nodeName: <node_name>

(continues on next page)

30 Chapter 6. Post-Installation Procedure

MetalK8s Documentation

(continued from previous page)

storageClassName: metalk8s
lvmLogicalVolume:

vgName: <vg_name> # Choose an existing LVM VolumeGroup
size: 10Gi # Loki LogicalVolume should have at least 10GiB capacity

template:
metadata:

labels:
app.kubernetes.io/name: 'loki'

6.1.3 Create Volumes objects

Once this file is created with the right values filled in, run the following command to create the Volume
objects (replacing <file_path> with the path of the aforementioned YAML file):

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
apply -f <file_path>

For more details on the available options for storage management, see this section of the Operational
Guide.

6.1.4 Loki volume sizing

Since the storage needs for logs greatly depends on the workload and the type of application that run
on top of the MetalK8s cluster, you need to refer to the documentation provided by your applications to
define the ideal size for the volume.

We still provide some hints for the worst case, which is very unlikely. If the entropy of log messages is
high, which makes them almost incompressible, you will need around 12Mb per thousands of event per
hour for an average log line of 512 bytes.

For 60000 events per hour, with the default retention of 2 weeks:

60 (1000 events) * 24 (hours per day) * 7 (days per week) * 3 (weeks) * 12 Mb =~ 355 Gb

This formula is given to calculate the worst case scenario, but with real application logs, it should be
drastically lower.

Regarding the MetalK8s cluster itself (internal services and system logs), 1Gb per week of retention
should be sufficient in most cases.

Warning: When you calculate the storage needs, you must always add an extra week to your actual
retention, because of the current week of logs.

Since there is no size-based purge mechanism, it is also recommended to add a security margin of
+50% volume space, in case of log burst.

Also, when creating the volume, you should take into account the potential growth of the cluster and
workload.

6.1. Provision Storage for Services 31

MetalK8s Documentation

6.2 Changing credentials

After a fresh installation, an administrator account is created with default credentials. For production
deployments, make sure to change those credentials and use safer values.

To change Grafana or MetalK8s GUI user credentials, follow this procedure.

6.3 Validating the deployment

To ensure the Kubernetes cluster is properly running before scheduling applications, perform the follow-
ing sanity checks:

1. Check that all desired Nodes are in a Ready state and show the expected roles:

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
get nodes

NAME STATUS ROLES AGE VERSION
bootstrap Ready bootstrap,etcd,infra,master 42m v1.15.5
node-1 Ready etcd,infra,master 26m v1.15.5
node-2 Ready etcd,infra,master 25m v1.15.5

Use the kubectl describe node <node_name> to get more details about a Node (for instance, to
check the right taints are applied).

2. Check that Pods are in their expected state (most of the time, Running, except for Prometheus and
AlertManager if the required storage was not provisioned yet - see the procedure above).

To look for all Pods at once, use the --all-namespaces flag. On the other hand, use the -n or
--namespace option to select Pods in a given Namespace.

For instance, to check all Pods making up the cluster-critical services:

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
get pods --namespace kube-system

NAME READY STATUS RESTARTS AGE
apiserver-proxy-bootstrap 1/1 Running 0 43m
apiserver-proxy-node-1 1/1 Running 0 2m28s
apiserver-proxy-node-2 1/1 Running 0 9m
calico-kube-controllers-6d8db9bcf5-w5w94 1/1 Running 0 43m
calico-node-4vxpp 1/1 Running 0 43m
calico-node-hvlkx 1/1 Running 7 23m
calico-node-jhj4r 1/1 Running 0 8m59s
coredns-8576b4bf99-lfjfc 1/1 Running 0 43m
coredns-8576b4bf99-tnt6b 1/1 Running 0 43m
etcd-bootstrap 1/1 Running 0 43m
etcd-node-1 1/1 Running 0 3m47s
etcd-node-2 1/1 Running 3 8m58s
kube-apiserver-bootstrap 1/1 Running 0 43m
kube-apiserver-node-1 1/1 Running 0 2m45s
kube-apiserver-node-2 1/1 Running 0 7m31s
kube-controller-manager-bootstrap 1/1 Running 3 44m
kube-controller-manager-node-1 1/1 Running 1 2m39s
kube-controller-manager-node-2 1/1 Running 2 7m25s
kube-proxy-gnxtp 1/1 Running 0 28m
kube-proxy-kvtjm 1/1 Running 0 43m
kube-proxy-vggzg 1/1 Running 0 27m
kube-scheduler-bootstrap 1/1 Running 1 44m
kube-scheduler-node-1 1/1 Running 0 2m39s
kube-scheduler-node-2 1/1 Running 0 7m25s
repositories-bootstrap 1/1 Running 0 44m

(continues on next page)

32 Chapter 6. Post-Installation Procedure

MetalK8s Documentation

(continued from previous page)

salt-master-bootstrap 2/2 Running 0 44m
storage-operator-756b87c78f-mjqc5 1/1 Running 1 43m

3. Using the result of the above command, obtain a shell in a running etcd Pod (replacing
<etcd_pod_name> with the appropriate value):

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
exec --namespace kube-system -it <etcd_pod_name> sh

Once in this shell, use the following to obtain health information for the etcd cluster:

root@etcd-bootstrap $ etcdctl --endpoints=https://[127.0.0.1]:2379 \
--cacert=/etc/kubernetes/pki/etcd/ca.crt \
--cert=/etc/kubernetes/pki/etcd/healthcheck-client.crt \
--key=/etc/kubernetes/pki/etcd/healthcheck-client.key \
endpoint health --cluster

https://<first-node-ip>:2379 is healthy: successfully committed proposal: took = 16.285672ms
https://<second-node-ip>:2379 is healthy: successfully committed proposal: took = 43.462092ms
https://<third-node-ip>:2379 is healthy: successfully committed proposal: took = 52.879358ms

4. Finally, check that the exposed services are accessible, using the information from this document.

6.3. Validating the deployment 33

MetalK8s Documentation

34 Chapter 6. Post-Installation Procedure

CHAPTER

SEVEN

ACCESSING CLUSTER SERVICES

7.1 MetalK8s GUI

This GUI is deployed during the Bootstrap installation, and can be used for operating, extending and
upgrading a MetalK8s cluster.

7.1.1 Gather Required Information

Get the control plane IP of the bootstrap node.

root@bootstrap $ salt-call grains.get metalk8s:control_plane_ip
local:

<the control plane IP>

7.1.2 Use MetalK8s UI

Once you have gathered the IP address and the port number, open your web browser and navigate to the
URL https://<ip>:8443, replacing placeholders with the values retrieved before.

The login page is loaded, and should resemble the following:

Log in with the default login / password (admin@metalk8s.invalid / password).

Note: To change the default password as provided above, refer to this procedure.

35

MetalK8s Documentation

The landing page should look like this:

This page displays two monitoring indicators:

1. the Cluster Status, which evaluates if control plane services are all up and running

2. the list of alerts stored in Alertmanager.

7.2 Grafana

Grafana is available on the same host as the MetalK8s UI, under /grafana. Log in with the default
credentials: admin@metalk8s.invalid / password.

7.3 Salt

MetalK8s uses SaltStack to manage the cluster. The Salt Master runs in a Pod on the Bootstrap node.

The Pod name is salt-master-<bootstrap hostname>, and it contains two containers: salt-master and
salt-api.

To interact with the Salt Master with the usual CLIs, open a terminal in the salt-master container
(assuming the Bootstrap hostname to be bootstrap):

root@bootstrap $ kubectl exec -it -n kube-system -c salt-master \
--kubeconfig /etc/kubernetes/admin.conf \
salt-master-bootstrap bash

36 Chapter 7. Accessing Cluster Services

https://www.saltstack.com/

CHAPTER

EIGHT

ADVANCED GUIDE

8.1 Multiple CIDRs network

In the Bootstrap Configuration it’s possible to provide several CIDRs for a single network, it’s needed
when several nodes does not sit in the same network.

networks:
controlPlane:

cidr:
- 10.100.1.0/28
- 10.200.1.0/28

workloadPlane:
cidr:
- 10.100.2.0/28
- 10.200.2.0/28

This kind of deployment needs good knowledge about networking, as each workload node needs to be
able to communicate with all others, even those in a different workload CIDR.

In this case IP-in-IP encapsulation is likely needed.

Some explanation can be found about this subject in Calico documentation.

37

https://docs.projectcalico.org/networking/vxlan-ipip

MetalK8s Documentation

38 Chapter 8. Advanced guide

CHAPTER

NINE

TROUBLESHOOTING

This section describes common issues users face during and after a MetalK8s installation.

If your issue is not presented here, create a GitHub issue or open a new GitHub discussion.

9.1 Bootstrap Installation Errors

Bootstrap installation fails for no obvious reason

If the Metalk8s installation fails and the console output does not provide enough information to identify
the cause of the failure, re-run the installation with the verbose flag (--verbose).

root@bootstrap $ /srv/scality/metalk8s-2.9.0-alpha1/bootstrap.sh --verbose

Errors after restarting the bootstrap node

If you reboot the bootstrap node and some containers (especially the salt-master container) do not start,
perform the following checks:

1. Ensure that the MetalK8s ISO is mounted properly.

[root@bootstrap vagrant]# mount | grep /srv/scality/metalk8s-2.9.0-alpha1
/home/centos/metalk8s.iso on /srv/scality/metalk8s-2.9.0-alpha1 type iso9660 (ro,
→˓relatime)

2. If the ISO is unmounted, run the following command to check the the status of the ISO file and
remount it automatically.

[root@bootstrap vagrant]# salt-call state.sls metalk8s.archives.mounted␣
→˓saltenv=metalk8s-2.9.0-alpha1
Summary for local

Succeeded: 3
Failed: 0

Bootstrap fails and console log is unscrollable

If the bootstrap process fails during MetalK8s installation and the console output is unscrollable, consult
the bootstrap logs in /var/log/metalk8s/bootstrap.log.

39

https://github.com/scality/metalk8s/issues/new/choose
https://github.com/scality/metalk8s/discussions/new
mailto:root@bootstrap
mailto:root@bootstrap
mailto:root@bootstrap

MetalK8s Documentation

9.2 Pod and Service CIDR Conflicts

If, after installing a MetalK8s cluster you notice routing issues in pod-to-pod communication:

1. Check the configured values for the internal pod and service networks.

[root@bootstrap]# salt-call pillar.get networks
local:

control_plane:

172.21.254.0/28
pod:

10.233.0.0/16
service:

10.96.0.0/12
workload_plane:

172.21.254.32/27

2. Ensure that the configured IP ranges (CIDR notation) do not conflict with your infrastructure.

40 Chapter 9. Troubleshooting

Part II

Operation

41

MetalK8s Documentation

This guide describes MetalK8s ISO preparation steps, upgrade and downgrade guidelines, supported
versions and best practices required for operating MetalK8s. Refer to the Installation if you do not have
a working MetalK8s setup.

43

https://github.com/scality/metalk8s/
https://github.com/scality/metalk8s/

MetalK8s Documentation

44

CHAPTER

TEN

CLUSTER MONITORING

This section covers the MetalK8s monitoring and alerting stack operations. It also describes the metrics
monitored using Prometheus, with the list of pre-configured alerting and recording rules.

10.1 Monitoring Stack

MetalK8s ships with a monitoring stack that uses charts, counts, and graphs to provide a cluster-wide
view of cluster health, pod status, node status, and network traffic status. Access the Grafana Service for
monitored statistics provided once MetalK8s has been deployed.

The MetalK8s monitoring stack consists of the following main components:

• Alertmanager

• Grafana

• Kube-state-metrics

• Prometheus

• Prometheus Node-exporter

10.2 Prometheus

In a MetalK8s cluster, the Prometheus service records real-time metrics in a time series database.
Prometheus can query a list of data sources called “exporters” at a specific polling frequency, and ag-
gregate this data across the various sources.

Prometheus uses a special language, Prometheus Query Language (PromQL), to write alerting and
recording rules.

10.2.1 Default Alert Rules

Alert rules enable a user to specify a condition that must occur before an external system like Slack
is notified. For example, a MetalK8s administrator might want to raise an alert for any node that is
unreachable for more than one minute.

Out of the box, MetalK8s ships with preconfigured alert rules, which are written as PromQL queries. The
table below outlines all the preconfigured alert rules exposed from a newly deployed MetalK8s cluster.

To customize predefined alert rules, refer to Prometheus Configuration Customization.

45

MetalK8s Documentation

Table 1: Default Prometheus Alerting rules
Name Severity Description
AlertmanagerConfigInconsistent critical The configuration of the instances of the Alertmanager cluster {{ $labels.namespace }}/{{ $labels.service }} are out of sync. {{ range printf “alertmanager_config_hash{namespace="%s",service="%s"}” $labels.namespace $labels.service | query }} Configuration hash for pod {{ .Labels.pod }} is “{{ printf “%.f” .Value }}” {{ end }}
AlertmanagerFailedReload warning Reloading Alertmanager’s configuration has failed for {{ $labels.namespace }}/{{ $labels.pod}}.
AlertmanagerMembersInconsistent critical Alertmanager has not found all other members of the cluster.
etcdMembersDown critical etcd cluster “{{ $labels.job }}”: members are down ({{ $value }}).
etcdInsufficientMembers critical etcd cluster “{{ $labels.job }}”: insufficient members ({{ $value }}).
etcdNoLeader critical etcd cluster “{{ $labels.job }}”: member {{ $labels.instance }} has no leader.
etcdHighNumberOfLeaderChanges warning etcd cluster “{{ $labels.job }}”: {{ $value }} leader changes within the last 15 minutes. Frequent elections may be a sign of insufficient resources, high network latency, or disruptions by other components and should be investigated.
etcdHighNumberOfFailedGRPCRequests warning etcd cluster “{{ $labels.job }}”: {{ $value }}% of requests for {{ $labels.grpc_method }} failed on etcd instance {{ $labels.instance }}.
etcdHighNumberOfFailedGRPCRequests critical etcd cluster “{{ $labels.job }}”: {{ $value }}% of requests for {{ $labels.grpc_method }} failed on etcd instance {{ $labels.instance }}.
etcdGRPCRequestsSlow critical etcd cluster “{{ $labels.job }}”: gRPC requests to {{ $labels.grpc_method }} are taking {{ $value }}s on etcd instance {{ $labels.instance }}.
etcdMemberCommunicationSlow warning etcd cluster “{{ $labels.job }}”: member communication with {{ $labels.To }} is taking {{ $value }}s on etcd instance {{ $labels.instance }}.
etcdHighNumberOfFailedProposals warning etcd cluster “{{ $labels.job }}”: {{ $value }} proposal failures within the last 30 minutes on etcd instance {{ $labels.instance }}.
etcdHighFsyncDurations warning etcd cluster “{{ $labels.job }}”: 99th percentile fync durations are {{ $value }}s on etcd instance {{ $labels.instance }}.
etcdHighCommitDurations warning etcd cluster “{{ $labels.job }}”: 99th percentile commit durations {{ $value }}s on etcd instance {{ $labels.instance }}.
etcdHighNumberOfFailedHTTPRequests warning {{ $value }}% of requests for {{ $labels.method }} failed on etcd instance {{ $labels.instance }}
etcdHighNumberOfFailedHTTPRequests critical {{ $value }}% of requests for {{ $labels.method }} failed on etcd instance {{ $labels.instance }}.
etcdHTTPRequestsSlow warning etcd instance {{ $labels.instance }} HTTP requests to {{ $labels.method }} are slow.
TargetDown warning {{ printf “%.4g” $value }}% of the {{ $labels.job }}/{{ $labels.service }} targets in {{ $labels.namespace }} namespace are down.
Watchdog none This is an alert meant to ensure that the entire alerting pipeline is functional. This alert is always firing, therefore it should always be firing in Alertmanager and always fire against a receiver. There are integrations with various notification mechanisms that send a notification when this alert is not firing. For example the “DeadMansSnitch” integration in PagerDuty.
KubeAPIErrorBudgetBurn critical The API server is burning too much error budget.
KubeAPIErrorBudgetBurn critical The API server is burning too much error budget.
KubeAPIErrorBudgetBurn warning The API server is burning too much error budget.
KubeAPIErrorBudgetBurn warning The API server is burning too much error budget.
KubeStateMetricsListErrors critical kube-state-metrics is experiencing errors in list operations.
KubeStateMetricsWatchErrors critical kube-state-metrics is experiencing errors in watch operations.
KubePodCrashLooping warning Pod is crash looping.
KubePodNotReady warning Pod has been in a non-ready state for more than 15 minutes.
KubeDeploymentGenerationMismatch warning Deployment generation mismatch due to possible roll-back
KubeDeploymentReplicasMismatch warning Deployment has not matched the expected number of replicas.
KubeStatefulSetReplicasMismatch warning Deployment has not matched the expected number of replicas.
KubeStatefulSetGenerationMismatch warning StatefulSet generation mismatch due to possible roll-back
KubeStatefulSetUpdateNotRolledOut warning StatefulSet update has not been rolled out.
KubeDaemonSetRolloutStuck warning DaemonSet rollout is stuck.
KubeContainerWaiting warning Pod container waiting longer than 1 hour
KubeDaemonSetNotScheduled warning DaemonSet pods are not scheduled.
KubeDaemonSetMisScheduled warning DaemonSet pods are misscheduled.
KubeJobCompletion warning Job did not complete in time
KubeJobFailed warning Job failed to complete.
KubeHpaReplicasMismatch warning HPA has not matched descired number of replicas.
KubeHpaMaxedOut warning HPA is running at max replicas
KubeCPUOvercommit warning Cluster has overcommitted CPU resource requests.
KubeMemoryOvercommit warning Cluster has overcommitted memory resource requests.
KubeCPUQuotaOvercommit warning Cluster has overcommitted CPU resource requests.
KubeMemoryQuotaOvercommit warning Cluster has overcommitted memory resource requests.
KubeQuotaAlmostFull info Namespace quota is going to be full.
KubeQuotaFullyUsed info Namespace quota is fully used.
KubeQuotaExceeded warning Namespace quota has exceeded the limits.
CPUThrottlingHigh info Processes experience elevated CPU throttling.
KubePersistentVolumeFillingUp critical PersistentVolume is filling up.
KubePersistentVolumeFillingUp warning PersistentVolume is filling up.
KubePersistentVolumeErrors critical PersistentVolume is having issues with provisioning.
KubeClientCertificateExpiration warning Client certificate is about to expire.
KubeClientCertificateExpiration critical Client certificate is about to expire.

continues on next page

46 Chapter 10. Cluster Monitoring

MetalK8s Documentation

Table 1 – continued from previous page
Name Severity Description
AggregatedAPIErrors warning An aggregated API has reported errors.
AggregatedAPIDown warning An aggregated API is down.
KubeAPIDown critical Target disappeared from Prometheus target discovery.
KubeControllerManagerDown critical Target disappeared from Prometheus target discovery.
KubeNodeNotReady warning Node is not ready.
KubeNodeUnreachable warning Node is unreachable.
KubeletTooManyPods warning Kubelet is running at capacity.
KubeNodeReadinessFlapping warning Node readiness status is flapping.
KubeletPlegDurationHigh warning Kubelet Pod Lifecycle Event Generator is taking too long to relist.
KubeletPodStartUpLatencyHigh warning Kubelet Pod startup latency is too high.
KubeletClientCertificateExpiration warning Kubelet client certificate is about to expire.
KubeletClientCertificateExpiration critical Kubelet client certificate is about to expire.
KubeletServerCertificateExpiration warning Kubelet server certificate is about to expire.
KubeletServerCertificateExpiration critical Kubelet server certificate is about to expire.
KubeletClientCertificateRenewalErrors warning Kubelet has failed to renew its client certificate.
KubeletServerCertificateRenewalErrors warning Kubelet has failed to renew its server certificate.
KubeletDown critical Target disappeared from Prometheus target discovery.
KubeSchedulerDown critical Target disappeared from Prometheus target discovery.
KubeVersionMismatch warning Different semantic versions of Kubernetes components running.
KubeClientErrors warning Kubernetes API server client is experiencing errors.
NodeFilesystemSpaceFillingUp warning Filesystem is predicted to run out of space within the next 24 hours.
NodeFilesystemSpaceFillingUp critical Filesystem is predicted to run out of space within the next 4 hours.
NodeFilesystemAlmostOutOfSpace warning Filesystem has less than 5% space left.
NodeFilesystemAlmostOutOfSpace critical Filesystem has less than 3% space left.
NodeFilesystemFilesFillingUp warning Filesystem is predicted to run out of inodes within the next 24 hours.
NodeFilesystemFilesFillingUp critical Filesystem is predicted to run out of inodes within the next 4 hours.
NodeFilesystemAlmostOutOfFiles warning Filesystem has less than 5% inodes left.
NodeFilesystemAlmostOutOfFiles critical Filesystem has less than 3% inodes left.
NodeNetworkReceiveErrs warning Network interface is reporting many receive errors.
NodeNetworkTransmitErrs warning Network interface is reporting many transmit errors.
NodeHighNumberConntrackEntriesUsed warning Number of conntrack are getting close to the limit
NodeClockSkewDetected warning Clock on {{ $labels.instance }} is out of sync by more than 300s. Ensure NTP is configured correctly on this host.
NodeClockNotSynchronising warning Clock on {{ $labels.instance }} is not synchronising. Ensure NTP is configured on this host.
NodeTextFileCollectorScrapeError warning Node Exporter text file collector failed to scrape.
NodeRAIDDegraded critical RAID Array is degraded
NodeRAIDDiskFailure warning Failed device in RAID array
NodeNetworkInterfaceFlapping warning Network interface “{{ $labels.device }}” changing it’s up status often on node-exporter {{ $labels.namespace }}/{{ $labels.pod }}”
PrometheusOperatorListErrors warning Errors while performing list operations in controller.
PrometheusOperatorWatchErrors warning Errors while performing watch operations in controller.
PrometheusOperatorSyncFailed warning Last controller reconciliation failed
PrometheusOperatorReconcileErrors warning Errors while reconciling controller.
PrometheusOperatorNodeLookupErrors warning Errors while reconciling Prometheus.
PrometheusOperatorNotReady warning Prometheus operator not ready
PrometheusOperatorRejectedResources warning Resources rejected by Prometheus operator
PrometheusBadConfig critical Failed Prometheus configuration reload.
PrometheusNotificationQueueRunningFull warning Prometheus alert notification queue predicted to run full in less than 30m.
PrometheusErrorSendingAlertsToSomeAlertmanagers warning Prometheus has encountered more than 1% errors sending alerts to a specific Alertmanager.
PrometheusErrorSendingAlertsToAnyAlertmanager critical Prometheus encounters more than 3% errors sending alerts to any Alertmanager.
PrometheusNotConnectedToAlertmanagers warning Prometheus is not connected to any Alertmanagers.
PrometheusTSDBReloadsFailing warning Prometheus has issues reloading blocks from disk.
PrometheusTSDBCompactionsFailing warning Prometheus has issues compacting blocks.
PrometheusNotIngestingSamples warning Prometheus is not ingesting samples.
PrometheusDuplicateTimestamps warning Prometheus is dropping samples with duplicate timestamps.

continues on next page

10.2. Prometheus 47

MetalK8s Documentation

Table 1 – continued from previous page
Name Severity Description
PrometheusOutOfOrderTimestamps warning Prometheus drops samples with out-of-order timestamps.
PrometheusRemoteStorageFailures critical Prometheus fails to send samples to remote storage.
PrometheusRemoteWriteBehind critical Prometheus remote write is behind.
PrometheusRemoteWriteDesiredShards warning Prometheus remote write desired shards calculation wants to run more than configured max shards.
PrometheusRuleFailures critical Prometheus is failing rule evaluations.
PrometheusMissingRuleEvaluations warning Prometheus is missing rule evaluations due to slow rule group evaluation.
PrometheusTargetLimitHit warning Prometheus has dropped targets because some scrape configs have exceeded the targets limit.

48 Chapter 10. Cluster Monitoring

CHAPTER

ELEVEN

ACCOUNT ADMINISTRATION

This section covers MetalK8s account administration operations, from user authentication and identity
management to user authorization.

11.1 User Authentication and Identity Management

In MetalK8s, user authentication and identity management are driven by the integration of
kube-apiserver and Dex, an OpenID Connect (OIDC) provider.

Kubernetes API enables OIDC as one authentication strategy (it also supports certificate-based authenti-
cation) by trusting Dex as an OIDC provider.

Dex can authenticate users against:

• a static user store (stored in configuration),

• a connector-based interface, allowing plug-ins from such external providers as LDAP, SAML,
GitHub, Active Directory and others to plug in.

Note: Out of the box, MetalK8s enables OIDC-based authentication for its UI and Grafana service.

11.1.1 Administering Grafana and MetalK8s UI

When MetalK8s is first installed, the UI and Grafana service are set with the default login credentials
admin@metalk8s.invalid, and password.

This default user is defined as a static user in the Dex configuration to enable MetalK8s administrators’
first access to these services. Change the default password after the first login.

Note: The MetalK8s UI and Grafana are both configured to use OIDC as an authentication mechanism,
and trust Dex as a provider. Changing the Dex configuration, including the default credentials, affects
both UIs.

To access the MetalK8s UI and Grafana service, refer to Accessing Cluster Services.

49

MetalK8s Documentation

11.1.2 Adding a Static User

To add a static user for the MetalK8s UI and or the Grafana service, perform the following steps from the
bootstrap node.

1. Generate a bcrypt hash of your password.

root@bootstrap $ htpasswd -nBC 14 "" | tr -d ':'
New password:
Re-type new password:
<your hash here, starting with "$2y$14$">

2. Generate a unique identifier.

root@bootstrap $ python -c 'import uuid; print uuid.uuid4()'

3. Add a new entry in the staticPasswords list. Use the password hash and user ID previously
generated, and choose a new email and user name.

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmap metalk8s-dex-config -n metalk8s-auth

[...]
data:

config.yaml: |-
apiVersion: addons.metalk8s.scality.com/v1alpha2
kind: DexConfiguration
spec:

[...]
config:
[...]
staticPasswords:

[...]
- email: "<email>"

hash: "<generated-password-hash>"
username: "<username>"
userID: "<generated-identifier>"

4. Apply your changes.

root@bootstrap $ STATES=$(printf ",metalk8s.addons.%s.deployed" \
dex prometheus-operator ui)

root@bootstrap $ kubectl exec -n kube-system -c salt-master \
--kubeconfig /etc/kubernetes/admin.conf \
salt-master-bootstrap -- salt-run state.sls \
"${STATES:1}" saltenv=metalk8s-2.9.0-alpha1

5. Bind the user to an existing (Cluster) Role using a ClusterRoleBlinding.

6. Check that the user has been successfully added. If so, log into the MetalK8s UI using the new
email and password.

50 Chapter 11. Account Administration

MetalK8s Documentation

11.1.3 Changing Static User Password

Important: Default admin user

A new MetalK8s installation is supplied with a default administrator account and a predefined password
(see Use MetalK8s UI). Change this password if the control plane network is accessible to untrusted
clients.

To change the default password for the MetalK8s UI or the Grafana service, perform the following steps
from the Bootstrap node.

1. Generate a bcrypt hash of the new password.

root@bootstrap $ htpasswd -nBC 14 "" | tr -d ':'
New password:
Re-type new password:
<your hash here, starting with "$2y$14$">

2. Find the entry for the selected user in the staticPasswords list and update its hash.

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmap metalk8s-dex-config -n metalk8s-auth

[...]
data:

config.yaml: |-
apiVersion: addons.metalk8s.scality.com/v1alpha2
kind: DexConfiguration
spec:

[...]
config:
[...]
staticPasswords:

[...]
- email: "<previous-email>"

hash: "<new-password-hash>"
username: "<previous-username>"
userID: "<previous-identifier>"

[...]

3. Apply your changes.

root@bootstrap $ kubectl exec -n kube-system -c salt-master \
--kubeconfig /etc/kubernetes/admin.conf \
salt-master-bootstrap -- salt-run state.sls \
metalk8s.addons.dex.deployed saltenv=metalk8s-2.9.0-alpha1

4. Check that the password has been changed. If so, log into the MetalK8s UI using the new password.

11.2 User Authorization

11.2.1 Kubernetes API

To authorize users and groups against the Kubernetes API, the API Server relies on RBAC (Role-Based
Access Control), through the use of special API objects:

• Roles and ClusterRoles, which define specific permissions on a set of API resources,

• RoleBindings and ClusterRoleBindings, which map a user or group to a set of Roles or Cluster-
Roles.

11.2. User Authorization 51

MetalK8s Documentation

Note: MetalK8s includes pre-provisioned ClusterRoles. Platform administrators can create new Roles
or ClusterRoles or refer to existing ones.

ClusterRoles

• Obtain the list of available ClusterRoles.

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
get clusterroles

• Describe a ClusterRole for more information.

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
describe clusterrole <name>

• The pre-provisioned static user admin@metalk8s.invalid is already bound to the cluster-admin
ClusterRole, which grants cluster-wide permissions to all exposed APIs.

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
describe clusterrole cluster-admin

Name: cluster-admin
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
PolicyRule:

Resources Non-Resource URLs Resource Names Verbs
--------- ----------------- -------------- -----
. [] [] [*]

[*] [] [*]

For more information on Kubernetes authorization mechanisms, refer to the RBAC documentation.

ClusterRoleBindings

To bind one or more users to an existing ClusterRole in all namespaces, follow this procedure.

1. Create a ClusterRoleBinding manifest (role_binding.yaml) from the following template.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

name: <role-binding-name-of-your-choice>
subjects:

- kind: User
name: <email>
apiGroup: rbac.authorization.k8s.io

roleRef:
kind: ClusterRole
name: <target-cluster-role>
apiGroup: rbac.authorization.k8s.io

2. Apply the manifest.

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
apply -f role_binding.yaml

To bind one or more groups to an existing ClusterRole in all namespaces, follow this procedure.

1. Create a ClusterRoleBinding manifest (role_binding.yaml) from the following template.

52 Chapter 11. Account Administration

https://kubernetes.io/docs/reference/access-authn-authz/rbac/

MetalK8s Documentation

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

name: <role-binding-name-of-your-choice>
subjects:

- kind: Group
name: <group-name>
apiGroup: rbac.authorization.k8s.io

roleRef:
kind: ClusterRole
name: <target-cluster-role>
apiGroup: rbac.authorization.k8s.io

2. Apply the manifest.

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
apply -f role_binding.yaml

11.2. User Authorization 53

MetalK8s Documentation

54 Chapter 11. Account Administration

CHAPTER

TWELVE

CLUSTER AND SERVICES CONFIGURATIONS

This section contains information describing the list of available Cluster and Services Configurations
including procedures for customizing and applying any given Cluster and Services Configurations.

12.1 Default Service Configurations

MetalK8s addons (Alertmanager, Dex, Grafana, Prometheus and UI) ships with default runtime service
configurations required for basic service deployment. Find below an exhaustive list of available default
Service Configurations deployed in a MetalK8s cluster.

12.1.1 Alertmanager Default Configuration

Alertmanager handles alerts sent by Prometheus. It takes care of deduplicating, grouping, and routing
them to the correct receiver integration such as email, PagerDuty, or OpsGenie. It also takes care of
silencing and inhibition of alerts.

The default configuration values for Alertmanager are specified below:

Configuration of the Alertmanager service
apiVersion: addons.metalk8s.scality.com
kind: AlertmanagerConfig
spec:
Configure the Alertmanager Deployment
deployment:

replicas: 1
notification:

config:
global:

resolve_timeout: 5m
templates: []
route:

group_by: ['job']
group_wait: 30s
group_interval: 5m
repeat_interval: 12h
receiver: 'null'
routes:
- match:

alertname: Watchdog
receiver: 'null'

receivers:
- name: 'null'

inhibit_rules: []

See Alertmanager Configuration Customization to override these defaults.

55

MetalK8s Documentation

12.1.2 Dex Default Configuration

Dex is an Identity Provider that drives user authentication and identity management in a MetalK8s
cluster.

The default configuration values for Dex are specified below:

Defaults for configuration of Dex (OIDC)
apiVersion: addons.metalk8s.scality.com/v1alpha2
kind: DexConfig
spec:
Deployment configuration
deployment:

replicas: 2

Dex server configuration
config:

issuer: https://{{ grains.metalk8s.control_plane_ip }}:8443/oidc

storage:
config:

inCluster: true
type: kubernetes

logger:
level: debug

web:
https: 0.0.0.0:5556
tlsCert: /etc/dex/tls/https/server/tls.crt
tlsKey: /etc/dex/tls/https/server/tls.key

frontend:
theme: scality
issuer: MetalK8s

connectors: []

oauth2:
alwaysShowLoginScreen: true
skipApprovalScreen: true
responseTypes: ["code", "token", "id_token"]

expiry:
signingKeys: "6h"
idTokens: "24h"

staticClients:
- id: oidc-auth-client
name: oidc-auth-client
redirectURIs:
- urn:ietf:wg:oauth:2.0:oob
secret: lkfa9jaf3kfakqyeoikfjakf93k2l
trustedPeers:
- metalk8s-ui
- grafana-ui

- id: metalk8s-ui
name: MetalK8s UI
redirectURIs:
- https://{{ grains.metalk8s.control_plane_ip }}:8443/
secret: ybrMJpVMQxsiZw26MhJzCjA2ut

- id: grafana-ui
name: Grafana UI

(continues on next page)

56 Chapter 12. Cluster and Services Configurations

MetalK8s Documentation

(continued from previous page)

redirectURIs:
- https://{{ grains.metalk8s.control_plane_ip }}:8443/grafana/login/generic_oauth
secret: 4lqK98NcsWG5qBRHJUqYM1

enablePasswordDB: true
staticPasswords: []

See Dex Configuration Customization for Dex configuration customizations.

12.1.3 Grafana Default Configuration

Grafana is a web interface used to visualize and analyze metrics scraped by Prometheus, with nice graphs.

The default configuration values for Grafana are specified below:

Configuration of the Grafana service
apiVersion: addons.metalk8s.scality.com
kind: GrafanaConfig
spec:
Configure the Grafana Deployment
deployment:

replicas: 1

12.1.4 Prometheus Default Configuration

Prometheus is responsible for monitoring all the applications and systems in the MetalK8s cluster. It
scrapes and stores various metrics from these systems and then analyze them against a set of alerting
rules. If a rule matches, Prometheus sends an alert to Alertmanager.

The default configuration values for Prometheus are specified below:

Configuration of the Prometheus service
apiVersion: addons.metalk8s.scality.com
kind: PrometheusConfig
spec:
Configure the Prometheus Deployment
deployment:

replicas: 1
config:

retention_time: "10d"
retention_size: "0" # "0" to disable size-based retention

rules:
node_exporter:
node_filesystem_space_filling_up:

warning:
hours: 24 # Hours before there is no space left
threshold: 40 # Min space left to trigger prediction

critical:
hours: 4
threshold: 20

node_filesystem_almost_out_of_space:
warning:

available: 5 # Percentage of free space left
critical:

available: 3
node_filesystem_files_filling_up:

warning:
hours: 24 # Hours before there is no inode left
threshold: 40 # Min space left to trigger prediction

(continues on next page)

12.1. Default Service Configurations 57

MetalK8s Documentation

(continued from previous page)

critical:
hours: 4
threshold: 20

node_filesystem_almost_out_of_files:
warning:

available: 5 # Percentage of free inodes left
critical:

available: 3
node_network_receive_errors:

warning:
errors: 10 # Number of receive errors for the last 2m

node_network_transmit_errors:
warning:

errors: 10 # Number of transmit errors for the last 2m
node_high_number_conntrack_entries_used:
warning:

threshold: 0.75
node_clock_skew_detected:

warning:
threshold:

high: 0.05
low: -0.05

node_clock_not_synchronising:
warning:

threshold: 0
node_raid_degraded:

critical:
threshold: 1

node_raid_disk_failure:
warning:
threshold: 1

12.1.5 Loki Default Configuration

Loki is a log aggregation system, its job is to receive logs from collectors (fluent-bit), store them on
persistent storage, then make them queryable through its API.

The default configuration values for Loki are specified below:

Configuration of the Loki service
apiVersion: addons.metalk8s.scality.com
kind: LokiConfig
spec:
deployment:

replicas: 1
config:

auth_enabled: false
chunk_store_config:

max_look_back_period: 0s
ingester:
chunk_block_size: 262144
chunk_idle_period: 3m
chunk_retain_period: 1m
lifecycler:

ring:
kvstore:

store: inmemory
replication_factor: 1

max_transfer_retries: 0
limits_config:

(continues on next page)

58 Chapter 12. Cluster and Services Configurations

MetalK8s Documentation

(continued from previous page)

enforce_metric_name: false
reject_old_samples: true
reject_old_samples_max_age: 168h

schema_config:
configs:
- from: 2018-04-15

index:
period: 168h
prefix: index_

object_store: filesystem
schema: v9
store: boltdb

server:
http_listen_port: 3100

storage_config:
boltdb:

directory: /data/loki/index
filesystem:

directory: /data/loki/chunks
table_manager:
retention_deletes_enabled: true
retention_period: 336h

12.1.6 UI Default Configuration

MetalK8s UI simplifies management and monitoring of a MetalK8s cluster from a centralized user inter-
face.

The default configuration values for MetalK8s UI are specified below:

Defaults for configuration of MetalK8s UI
apiVersion: addons.metalk8s.scality.com/v1alpha1
kind: UIConfig
spec:
basePath: /

See Metalk8s UI Configuration Customization to override these defaults.

12.1.7 Shell UI Default Configuration

MetalK8s Shell UI provides a common set of features to MetalK8s UI and any other UI (both control
and workload plane) configured to include the Shell UI component(s). Features exposed include: - user
authentication using an OIDC provider - navigation menu items, displayed according to user groups
(retrieved from OIDC)

The default Shell UI configuration values are specified below:

{%- set dex_defaults = salt.slsutil.renderer('salt://metalk8s/addons/dex/config/dex.yaml.j2',␣
→˓saltenv=saltenv) %}
{%- set dex = salt.metalk8s_service_configuration.get_service_conf('metalk8s-auth', 'metalk8s-dex-
→˓config', dex_defaults) %}

Defaults for shell UI configuration
apiVersion: addons.metalk8s.scality.com/v1alpha1
kind: ShellUIConfig
spec:

oidc:
providerUrl: "/oidc"

(continues on next page)

12.1. Default Service Configurations 59

MetalK8s Documentation

(continued from previous page)

redirectUrl: "https://{{ grains.metalk8s.control_plane_ip }}:8443/"
clientId: "metalk8s-ui"
responseType: "id_token"
scopes: "openid profile email groups offline_access audience:server:client_id:oidc-auth-client"

userGroupsMapping:
{%- for user in dex.spec.config.staticPasswords | map(attribute='email') %}

"{{ user }}": [metalk8s:admin]
{%- endfor %}

logo:
light: /brand/assets/logo-light.svg
dark: /brand/assets/logo-dark.svg

favicon: /brand/favicon-metalk8s.svg
canChangeLanguage: false
canChangeTheme: false
options:

main:
"https://{{ grains.metalk8s.control_plane_ip }}:8443/":

en: "Platform"
fr: "Plateforme"
groups: [metalk8s:admin]
activeIfMatches: "https://{{ grains.metalk8s.control_plane_ip }}:8443/(?!alerts).*"

"https://{{ grains.metalk8s.control_plane_ip }}:8443/alerts":
en: "Alerts"
fr: "Alertes"
groups: [metalk8s:admin]

subLogin:
"https://{{ grains.metalk8s.control_plane_ip }}:8443/docs":

en: "Documentation"
fr: "Documentation"

See MetalK8s Shell UI Configuration Customization to override these defaults.

12.2 Service Configurations Customization

12.2.1 Alertmanager Configuration Customization

Default configuration for Alertmanager can be overridden by editing its Cluster and Service ConfigMap
metalk8s-alertmanager-config in namespace metalk8s-monitoring under the key data.config\.yaml:

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmap -n metalk8s-monitoring \
metalk8s-alertmanager-config

The following documentation is not exhaustive and is just here to give some hints on basic usage, for
more details or advanced configuration, see the official Alertmanager documentation.

60 Chapter 12. Cluster and Services Configurations

https://prometheus.io/docs/alerting/configuration/

MetalK8s Documentation

Adding inhibition rule for an alert

Alert inhibition rules allow making one alert inhibit notifications for some other alerts.

For example, inhibiting alerts with a warning severity when there is the same alert with a critical
severity.

apiVersion: v1
kind: ConfigMap
data:

config.yaml: |-
apiVersion: addons.metalk8s.scality.com
kind: AlertmanagerConfig
spec:

notification:
config:

inhibit_rules:
- source_match:

severity: critical
target_match:

severity: warning
equal:

- alertname

Adding receivers

Receivers allow configuring where the alert notifications are sent.

Here is a simple Slack receiver which makes Alertmanager send all notifications to a specific Slack chan-
nel.

apiVersion: v1
kind: ConfigMap
data:

config.yaml: |-
apiVersion: addons.metalk8s.scality.com
kind: AlertmanagerConfig
spec:

notification:
config:

global:
slack_api_url: https://hooks.slack.com/services/ABCDEFGHIJK

route:
receiver: slack-receiver

receivers:
- name: slack-receiver

slack_configs:
- channel: '#<your-channel>'

send_resolved: true

You can find documentation here to activate incoming webhooks for your Slack workspace and retrieve
the slack_api_url value.

Another example, with email receiver.

apiVersion: v1
kind: ConfigMap
data:

config.yaml: |-
apiVersion: addons.metalk8s.scality.com
kind: AlertmanagerConfig
spec:

(continues on next page)

12.2. Service Configurations Customization 61

https://slack.com/intl/en-fr/help/articles/115005265063-Incoming-Webhooks-for-Slack

MetalK8s Documentation

(continued from previous page)

notification:
config:

route:
receiver: email-receiver

receivers:
- name: email-receiver

email_configs:
- to: <your-address>@<your-domain.tld>

from: alertmanager@<your-domain.tld>
smarthost: <smtp.your-domain.tld>:587
auth_username: alertmanager@<your-domain.tld>
auth_identity: alertmanager@<your-domain.tld>
auth_password: <password>
send_resolved: true

There are more receivers available (PagerDuty, OpsGenie, HipChat, . . .).

Applying configuration

Any changes made to metalk8s-alertmanager-config ConfigMap must then be applied with Salt.

root@bootstrap $ kubectl exec --kubeconfig /etc/kubernetes/admin.conf \
-n kube-system -c salt-master salt-master-bootstrap -- \
salt-run state.sls \
metalk8s.addons.prometheus-operator.deployed \
saltenv=metalk8s-2.9.0-alpha1

12.2.2 Prometheus Configuration Customization

Default configuration for Prometheus can be overridden by editing its Cluster and Service ConfigMap
metalk8s-prometheus-config in namespace metalk8s-monitoring under the key data.config.yaml:

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmap -n metalk8s-monitoring \
metalk8s-prometheus-config

Change Retention Time

Prometheus is deployed with a retention based on time (10d). This value can be overriden:

apiVersion: v1
kind: ConfigMap
metadata:
name: metalk8s-prometheus-config
namespace: metalk8s-monitoring

data:
config.yaml: |-

apiVersion: addons.metalk8s.scality.com
kind: PrometheusConfig
spec:
config:

retention_time: 30d

Note: Supported time units are y, w, d, h, m s and ms (years, weeks, days, hours, minutes, seconds and
milliseconds).

62 Chapter 12. Cluster and Services Configurations

MetalK8s Documentation

Set Retention Size

Prometheus is deployed with the size-based retention disabled. This functionality can be actived:

apiVersion: v1
kind: ConfigMap
metadata:
name: metalk8s-prometheus-config
namespace: metalk8s-monitoring

data:
config.yaml: |-

apiVersion: addons.metalk8s.scality.com
kind: PrometheusConfig
spec:
config:

retention_size: 10GB

Note: Supported size units are B, KB, MB, GB, TB and PB.

Warning: Prometheus does not take the write-ahead log (WAL) size in account to calculate the
retention, so the actual disk consumption can be greater than retention_size. You should at least add
a 10% margin to be safe. (i.e.: set retention_size to 9GB for a 10GB volume)

Both size and time based retentions can be activated at the same time.

Predefined Alert Rules Customization

A subset of the predefined Alert rules can be customized, the exhaustive list can be found here.

For example, to change the threshold for the disk space alert (% of free space left) from 5% to 10%,
simply do:

apiVersion: v1
kind: ConfigMap
metadata:
name: metalk8s-prometheus-config
namespace: metalk8s-monitoring

data:
config.yaml: |-

apiVersion: addons.metalk8s.scality.com
kind: PrometheusConfig
spec:
rules:

node_exporter:
node_filesystem_almost_out_of_space:
warning:

available: 10

The new configuration must then be applied with Salt.

root@bootstrap $ kubectl exec --kubeconfig /etc/kubernetes/admin.conf \
-n kube-system -c salt-master salt-master-bootstrap -- \
salt-run state.sls \
metalk8s.addons.prometheus-operator.deployed \
saltenv=metalk8s-2.9.0-alpha1

12.2. Service Configurations Customization 63

MetalK8s Documentation

Adding New Rules

Alerting rules allow defining alert conditions based on PromQL expressions and to send notifications about
these alerts to Alertmanager.

In order to add Alert rules, a new PrometheusRule manifest must be created.

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
labels:

app: prometheus-operator
app.kubernetes.io/name: prometheus-operator

name: <prometheus-rule-name>
namespace: <namespace-name>

spec:
groups:
- name: <rules-group-name>

rules:
- alert: <alert-rule-name>

annotations:
description: "some description"
summary: "alert summary"

expr: <PromQL-expression>
for: 1h
labels:

severity: warning

Then this manifest must be applied.

root@bootstrap $ kubectl --kubeconfig=/etc/kubernetes/admin.conf \
apply -f <path-to-the-manifest>

For more details on Alert Rules, see the official Prometheus alerting rules documentation

Applying configuration

Any changes made to metalk8s-prometheus-config ConfigMap must then be applied with Salt.

root@bootstrap $ kubectl exec --kubeconfig /etc/kubernetes/admin.conf \
-n kube-system -c salt-master salt-master-bootstrap -- \
salt-run state.sls \
metalk8s.addons.prometheus-operator.deployed \
saltenv=metalk8s-2.9.0-alpha1

12.2.3 Dex Configuration Customization

Enable or Disable the Static User Store

Dex includes a local store of users and their passwords, which is enabled by default.

Important: To continue using MetalK8s OIDC (especially for MetalK8s UI and Grafana) in case of the
loss of external identity providers, it is advised to keep the static user store enabled.

To disable (resp. enable) it, perform the following steps:

1. Set the enablePasswordDB configuration flag to false (resp. true):

64 Chapter 12. Cluster and Services Configurations

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/

MetalK8s Documentation

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmap metalk8s-dex-config -n metalk8s-auth

[...]
data:

config.yaml: |-
apiVersion: addons.metalk8s.scality.com/v1alpha2
kind: DexConfiguration
spec:

[...]
config:
[...]
enablePasswordDB: false # or true

2. Apply your changes:

root@bootstrap $ kubectl exec -n kube-system -c salt-master \
--kubeconfig /etc/kubernetes/admin.conf \
salt-master-bootstrap -- salt-run state.sls \
metalk8s.addons.dex.deployed saltenv=metalk8s-2.9.0-alpha1

Note: Dex enables other operations on static users, such as Adding a Static User, and Changing a Static
User Password.

Additional Configurations

All configuration options exposed by Dex can be changed by following a similar procedure to the ones
documented above. Refer to Dex documentation for an exhaustive explanation of what is supported.

To define (or override) any configuration option, follow these steps:

1. Add (or change) the corresponding field under the spec.config key of the metalk8s-auth/metalk8s-
dex-config ConfigMap:

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmap metalk8s-dex-config -n metalk8s-auth

For example, registering a client application with Dex can be done by adding a new entry under
staticClients:

[...]
data:

config.yaml: |-
apiVersion: addons.metalk8s.scality.com/v1alpha2
kind: DexConfiguration
spec:

[...]
config:
[...]
staticClients:
- id: example-app

secret: example-app-secret
name: 'Example App'
Where the app will be running.
redirectURIs:
- 'http://127.0.0.1:5555/callback'

2. Apply your changes by running:

root@bootstrap $ kubectl exec -n kube-system -c salt-master \

12.2. Service Configurations Customization 65

https://github.com/dexidp/dex/tree/v2.23.0/Documentation

MetalK8s Documentation

--kubeconfig /etc/kubernetes/admin.conf \
salt-master-bootstrap -- salt-run state.sls \
metalk8s.addons.dex.deployed saltenv=metalk8s-2.9.0-alpha1

12.2.4 Loki Configuration Customization

Default configuration for Loki can be overridden by editing its Cluster and Service ConfigMap
metalk8s-loki-config in namespace metalk8s-logging under the key data.config.yaml:

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmap -n metalk8s-logging \
metalk8s-loki-config

The following documentation is not exhaustive and is just here to give some hints on basic usage, for
more details or advanced configuration, see the official Loki documentation.

Changing the logs retention period

Retention period is the time the logs will be stored and available before getting purged.

For example, to set the retention period to 1 week, the ConfigMap must be edited as follows:

apiVersion: v1
kind: ConfigMap
data:
config.yaml: |-

apiVersion: addons.metalk8s.scality.com
kind: LokiConfig
spec:
config:

table_manager:
retention_period: 168h

Note: Due to internal implementation, retention_period must be a multiple of 24h in order to get the
expected behavior

12.2.5 Metalk8s UI Configuration Customization

Default configuration for MetalK8s UI can be overridden by editing its Cluster and Service ConfigMap
metalk8s-ui-config in namespace metalk8s-ui under the key data.config\.yaml:

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmap -n metalk8s-ui \
metalk8s-ui-config

66 Chapter 12. Cluster and Services Configurations

https://grafana.com/docs/loki/latest/configuration/

MetalK8s Documentation

Changing the MetalK8s UI Ingress Path

In order to expose another UI at the root path of the control plane, in place of MetalK8s UI, you need to
change the Ingress path from which MetalK8s UI is served.

For example, to serve MetalK8s UI at /platform instead of /, follow these steps:

1. Change the value of spec.basePath in the ConfigMap:

apiVersion: v1
kind: ConfigMap
data:
config.yaml: |-

apiVersion: addons.metalk8s.scality.com/v1alpha1
kind: UIConfig
spec:
basePath: /platform

1. Apply your changes by running:

root@bootstrap $ kubectl exec -n kube-system -c salt-master \
--kubeconfig /etc/kubernetes/admin.conf \
salt-master-bootstrap -- salt-run state.sls \
metalk8s.addons.ui.deployed saltenv=metalk8s-2.9.0-alpha1

12.2.6 MetalK8s Shell UI Configuration Customization

Default configuration for MetalK8s Shell UI can be overridden by editing its Cluster and Service Con-
figMap metalk8s-shell-ui-config in namespace metalk8s-ui under the key data.config\.yaml.

Changing UI OIDC Configuration

In order to adapt the OIDC configuration (e.g. the provider URL or the client ID) used by the UI shareable
navigation bar (called Shell UI), you need to modify its ConfigMap.

For example, in order to replace the default client ID with “ui”, follow these steps:

1. Edit the ConfigMap:

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmap -n metalk8s-ui \
metalk8s-shell-ui-config

1. Add the following entry:

apiVersion: v1
kind: ConfigMap
data:
config.yaml: |-

apiVersion: addons.metalk8s.scality.com/v1alpha1
kind: ShellUIConfig
spec:
[...]
oidc:

[...]
clientId: "ui"

1. Apply your changes by running:

root@bootstrap $ kubectl exec -n kube-system -c salt-master \
--kubeconfig /etc/kubernetes/admin.conf \
salt-master-bootstrap -- salt-run state.sls \

12.2. Service Configurations Customization 67

MetalK8s Documentation

metalk8s.addons.ui.deployed saltenv=metalk8s-2.9.0-alpha1

You can similarly edit the requested scopes through the “scopes” attribute or the OIDC provider URL
through the “providerUrl” attribute.

Changing UI Menu Entries

To change the UI navigation menu entries, follow these steps:

1. Edit the ConfigMap:

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmap -n metalk8s-ui \
metalk8s-shell-ui-config

1. Edit the options field. As an example, we add an entry to the main section (there is also a subLogin
section):

apiVersion: v1
kind: ConfigMap
data:
config.yaml: |-

apiVersion: addons.metalk8s.scality.com/v1alpha1
kind: ShellUIConfig
spec:
[...]
options:

[...]
main:

[...]
https://www.scality.com/:
en: "Scality"
fr: "Scality"

1. Apply your changes by running:

root@bootstrap $ kubectl exec -n kube-system -c salt-master \
--kubeconfig /etc/kubernetes/admin.conf \
salt-master-bootstrap -- salt-run state.sls \
metalk8s.addons.ui.deployed saltenv=metalk8s-2.9.0-alpha1

12.2.7 Replicas Count Customization

MetalK8s administrators can scale the number of pods for any service mentioned below by changing the
number of replicas which is by default set to a single pod per service.

Service Namespace ConfigMap
Alertmanager metalk8s-monitoring metalk8s-alertmanager-config
Grafana metalk8s-grafana-config
Prometheus metalk8s-prometheus-config
Dex metalk8s-auth metalk8s-dex-config
Loki metalk8s-logging metalk8s-loki-config

To change the number of replicas, perform the following operations:

1. From the Bootstrap node, edit the ConfigMap attributed to the service and then modify the replicas
entry.

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf \
edit configmap <ConfigMap> -n <Namespace>

68 Chapter 12. Cluster and Services Configurations

MetalK8s Documentation

Note: For each service, consult the Cluster Services table to obtain the ConfigMap and the Namespace
to be used for the above command.

Make sure to replace <number-of-replicas> field with an integer value (For example 2).

[...]
data:

config.yaml: |-
spec:

deployment:
replicas: <number-of-replicas>

[...]

2. Save the ConfigMap changes.

3. From the Bootstrap node, execute the following command which connects to the Salt master con-
tainer and applies salt-states to propagate the new changes down to the underlying services.

root@bootstrap $ kubectl exec --kubeconfig /etc/kubernetes/admin.conf \
-n kube-system -c salt-master salt-master-bootstrap \
-- salt-run state.sls metalk8s.deployed \
saltenv=metalk8s-2.9.0-alpha1

Note: Scaling the number of pods for services like Prometheus, Alertmanager and Loki requires
provisioning extra persistent volumes for these pods to startup normally. Refer to this procedure for
more information.

12.2. Service Configurations Customization 69

MetalK8s Documentation

70 Chapter 12. Cluster and Services Configurations

CHAPTER

THIRTEEN

VOLUMEMANAGEMENT

This section covers MetalK8s volume management operations, from creating a StorageClass, to creating
and deleting a volume using the CLI or the UI. Volumes enable the use of persistent data storage within
a MetalK8s Cluster.

13.1 StorageClass Creation

MetalK8s uses StorageClass objects to describe how volumes are formatted and mounted. This topic
explains how to use the CLI to create a StorageClass.

1. Create a StorageClass manifest.

You can define a new StorageClass using the following template:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:

name: <storageclass_name>
provisioner: kubernetes.io/no-provisioner
reclaimPolicy: Retain
volumeBindingMode: WaitForFirstConsumer
mountOptions:
- rw

parameters:
fsType: <filesystem_type>
mkfsOptions: <mkfs_options>

Set the following fields:

• mountOptions: specifies how the volume should be mounted. For example: rw (read/write),
or ro (read-only).

• fsType: specifies the filesystem to use on the volume. xfs and ext4 are the only currently
supported file system types.

• mkfsOptions: specifies how the volume should be formatted. This field is optional (note that
the options are passed as a JSON-encoded string). For example '["-m", "0"]' could be used
as mkfsOptions for an ext4 volume.

• Set volumeBindingMode as WaitForFirstConsumer in order to delay the binding and provision-
ing of a Pod until a Pod using the PersistentVolumeClaim is created.

2. Create the StorageClass.

root@bootstrap $ kubectl apply -f storageclass.yml

3. Check that the StorageClass has been created.

71

MetalK8s Documentation

root@bootstrap $ kubectl get storageclass <storageclass_name>
NAME PROVISIONER AGE
<storageclass_name> kubernetes.io/no-provisioner 2s

13.2 Volume Management Using the CLI

This topic describes how to create and delete a MetalK8s Volume using the CLI. Volume objects enable
a declarative provisioning of persistent storage, to use in Kubernetes workloads (through PersistentVol-
umes).

13.2.1 Requirements

• StorageClass objects must be registered in your cluster to create Volumes. For more information
refer to StorageClass Creation.

13.2.2 Creating a Volume

1. Create a Volume manifest using one of the following templates:

rawBlockDevice Volumes

apiVersion: storage.metalk8s.scality.com/v1alpha1
kind: Volume
metadata:

name: <volume_name>
spec:

nodeName: <node_name>
storageClassName: <storageclass_name>
mode: "Filesystem"
rawBlockDevice:

devicePath: <devicePath>

Set the following fields:

• name: the name of your volume, must be unique.

• nodeName: the name of the node where the volume will be located.

• storageClassName: the StorageClass to use.

• mode: describes how the volume is intented to be consumed, either Block or Filesystem
(default to Filesystem if not specified).

• devicePath: path to the block device (for example: /dev/sda1).

72 Chapter 13. Volume Management

MetalK8s Documentation

lvmLogicalVolume Volumes

apiVersion: storage.metalk8s.scality.com/v1alpha1
kind: Volume
metadata:

name: <volume_name>
spec:

nodeName: <node_name>
storageClassName: <storageclass_name>
mode: "Filesystem"
lvmLogicalVolume:

vgName: <vg_name>
size: 10Gi

Set the following fields:

• name: the name of your volume, must be unique.

• nodeName: the name of the node where the volume will be located.

• storageClassName: the StorageClass to use.

• mode: describes how the volume is intented to be consumed, either Block or Filesystem
(default to Filesystem if not specified).

• vgName: LVM VolumeGroup name to create the LogicalVolume the VolumeGroup must exists
on the Node.

• size: Size of the LVM LogicalVolume to create.

2. Create the Volume.

root@bootstrap $ kubectl apply -f volume.yml

3. Check that the Volume has been created.

root@bootstrap $ kubectl get volume <volume_name>
NAME NODE STORAGECLASS
<volume_name> bootstrap metalk8s-demo-storageclass

13.2.3 Deleting a Volume

Note: A Volume object can only be deleted if there is no backing storage, or if the volume is not in use.
Otherwise, the volume will be marked for deletion and remain available until one of the conditions is
met.

1. Delete a Volume.

root@bootstrap $ kubectl delete volume <volume_name>
volume.storage.metalk8s.scality.com <volume_name> deleted

2. Check that the Volume has been deleted.

Note: The command below returns a list of all volumes. The deleted volume entry should not be
found in the list.

root@bootstrap $ kubectl get volume

13.2. Volume Management Using the CLI 73

MetalK8s Documentation

13.3 Volume Management Using the UI

This topic describes how to create and delete a MetalK8s Volume using the MetalK8s UI.

13.3.1 Requirements

• StorageClass objects must be registered in your cluster to create Volumes. For more information
refer to StorageClass Creation.

• Access the MetalK8s UI. Refer to this procedure.

13.3.2 Creating a Volume

1. Click Nodes on the sidebar to access the node list.

2. On the node list, select the node you want to create a volume on.

3. Go to the Volumes tab and click + Create Volume.

4. Fill in the respective fields, and click Create.

• Name: Denotes the volume name.

• Labels: A set of key/value pairs used by PersistentVolumeClaims to select the right Persis-
tentVolumes.

• Storage Class: Refers to StorageClass Creation.

• Type: MetalK8s currently only supports RawBlockDevice and SparseLoopDevice.

• Device path: Refers to the path of an existing storage device.

74 Chapter 13. Volume Management

MetalK8s Documentation

5. Click Volumes on the sidebar to access the volume list. The new volume created appears in the
list.

13.3. Volume Management Using the UI 75

MetalK8s Documentation

13.3.3 Deleting a Volume

1. Click Volumes on the sidebar to access the volume list, and select the volume you want to delete.

2. Go to the Overview tab, click Delete Volume.

3. Confirm the volume deletion request by clicking Delete.

76 Chapter 13. Volume Management

CHAPTER

FOURTEEN

CLUSTER UPGRADE

MetalK8s clusters are upgraded using the utility scripts packaged with every new release. This topic
describes upgrading MetalK8s and all components included in the stack.

14.1 Supported Versions

Note: MetalK8s supports upgrade of at most one minor version at a time. For example:

• from 2.4.0 to 2.4.4,

• from 2.4.0 to 2.5.1.

Refer to the release notes for more information.

14.2 Prerequisites

14.2.1 ISO Preparation

Provision a new MetalK8s ISO by running the utility script shipped with the current installation.

/srv/scality/metalk8s-X.X.X/iso-manager.sh -a <path_to_iso>

14.2.2 Pre-Checks

Use the --dry-run option to validate your environment for upgrade:

/srv/scality/metalk8s-X.Y.Z/upgrade.sh --dry-run --verbose

This will simulate the upgrade pre-checks and provide an overview of the changes to be carried out in
your MetalK8s cluster.

Important: The version prefix metalk8s-X.Y.Z must be the new MetalK8s version you want to upgrade
to.

77

https://github.com/scality/metalk8s/releases

MetalK8s Documentation

14.3 Upgrade

1. Run the utility script shipped with the new version you want to upgrade to.

2. From the Bootstrap node, launch the upgrade.

/srv/scality/metalk8s-X.Y.Z/upgrade.sh

Important: The version prefix metalk8s-X.Y.Z must be the new MetalK8s version you want to
upgrade to.

78 Chapter 14. Cluster Upgrade

CHAPTER

FIFTEEN

CLUSTER DOWNGRADE

MetalK8s clusters are downgraded using the utility scripts that are packaged with your current installa-
tion. This topic describes downgrading MetalK8s and all components included in the stack.

15.1 Supported Versions

Note: MetalK8 supports downgrade of at most one minor version at a time. For example:

• from 2.4.4 to 2.4.1,

• from 2.5.1 to 2.4.0.

Refer to the release notes for more information.

15.2 Prerequisites

15.2.1 ISO Preparation

Provision a new MetalK8s ISO by running the utility script shipped with the current installation.

/srv/scality/metalk8s-X.X.X/iso-manager.sh -a <path_to_iso>

15.2.2 Pre-Checks

You can test if your environment will successfully downgrade with the following command.

/srv/scality/metalk8s-X.Y.Z/downgrade.sh --destination-version \
<destination_version> --dry-run --verbose

This will simulate the downgrade pre-checks and provide an overview of the changes to be carried out
in your MetalK8s cluster.

Important: The version prefix metalk8s-X.Y.Z must be the current installed MetalK8s version.

79

https://github.com/scality/metalk8s/releases

MetalK8s Documentation

15.3 Downgrade

1. Run the utility script shipped with the current installation providing it with the destination version.

2. From the Bootstrap node, launch the downgrade.

/srv/scality/metalk8s-X.Y.Z/downgrade.sh --destination-version <version>

Important: The version prefix metalk8s-X.Y.Z must be the current installed MetalK8s version.

80 Chapter 15. Cluster Downgrade

CHAPTER

SIXTEEN

DISASTER RECOVERY

This section offers a series of recovery operations such as the backup and restoration of the MetalK8s
bootstrap node.

16.1 Bootstrap Node Backup and Restoration

This topic describes how to back up a MetalK8s bootstrap node manually, and how to restore a bootstrap
node from such a backup.

Note: A backup is generated automatically:

• at the end of the bootstrap,

• at the beginning of an upgrade or downgrade,

• at the end of an upgrade or downgrade,

• at the end of a bootstrap restoration.

16.1.1 Backing Up a Bootstrap Node

To create a new backup file, run the following command:

/srv/scality/metalk8s-2.9.0-alpha1/backup.sh

Backup archives are stored in /var/lib/metalk8s/.

16.1.2 Restoring a Bootstrap Node

Warning: You must have a highly available control plane with at least three members in the etcd
cluster (including the failed bootstrap node), to use the restore script.

Note: To restore a bootstrap node you need a backup archive and MetalK8s ISOs. All the ISOs referenced
in the bootstrap configuration file (located in /etc/metalk8s/bootstrap.yaml) must be present.

1. Unregister the unreachable etcd member from the cluster by running the following commands from
a working node with the etcd role:

1. Get etcd container id.

CONT_ID=$(crictl ps -q --label io.kubernetes.container.name=etcd --state Running)

81

MetalK8s Documentation

2. List all etcd members to get the ID of the etcd member that needs to be removed.

crictl exec -it "$CONT_ID" \
etcdctl --endpoints https://localhost:2379 \
--cacert /etc/kubernetes/pki/etcd/ca.crt \
--key /etc/kubernetes/pki/etcd/server.key \
--cert /etc/kubernetes/pki/etcd/server.crt \
member list

3. Remove the etcd member (replace <etcd_id> in the command).

crictl exec -it "$CONT_ID" \
etcdctl --endpoints https://localhost:2379 \
--cacert /etc/kubernetes/pki/etcd/ca.crt \
--key /etc/kubernetes/pki/etcd/server.key \
--cert /etc/kubernetes/pki/etcd/server.crt \
member remove <etcd_id>

2. Because multiple bootstrap nodes are not supported, remove the old bootstrap node before per-
forming the restoration by running the following commands from a working node with a master
role:

1. List all nodes to get the node name of the old bootstrap node that needs to be removed.

kubectl get node --selector="node-role.kubernetes.io/bootstrap" \
--kubeconfig=/etc/kubernetes/admin.conf

2. Remove the old bootstrap node (replace <node_name> in the command).

kubectl delete node <node_name> --kubeconfig=/etc/kubernetes/admin.conf

3. Mount the ISO.

4. Restore the bootstrap node. Replace <backup_archive> with the path to the backup archive you
want to use, and <node_ip> with a control plane IP of one control plane node.

/srv/scality/metalk8s-|version|/restore.sh --backup-file <backup_archive> --apiserver-node-ip
→˓<node_ip>

82 Chapter 16. Disaster Recovery

CHAPTER

SEVENTEEN

SOLUTION DEPLOYMENT

To deploy a solution in a MetalK8s cluster, a utility script is provided. This procedure describes how to
deploy a solution using this tool, which is located at the root of the MetalK8s archive:

/srv/scality/metalk8s-2.9.0-alpha1/solutions.sh

17.1 Preparation

1. Import a solution in the cluster, and make the container images available through the cluster reg-
istry.

./solutions.sh import --archive </path/to/solution.iso>

2. Activate a solution version.

./solutions.sh activate --name <solution-name> --version <solution-version>

Only one version of a solution can be active at a time. An active solution version provides cluster-
wide resources, such as CRDs, to all other versions of this solution.

17.2 Deployment

1. Solutions are meant to be deployed in isolated namespaces called environments.

To create an environment, run:

./solutions.sh create-env --name <environment-name>

2. Solutions are packaged with an Operator to provide all required domain-specific logic. To deploy a
solution operator in an environment, run:

./solutions.sh add-solution --name <environment-name> \
--solution <solution-name> --version <solution-version>

83

MetalK8s Documentation

17.3 Configuration

The solution operator is now deployed. To finalize the deployment and configuration of a solution, refer
to its documentation.

84 Chapter 17. Solution Deployment

CHAPTER

EIGHTEEN

CHANGING THE HOSTNAME OF AMETALK8S NODE

1. On the node, change the hostname:

$ hostnamectl set-hostname <New hostname>
$ systemctl restart systemd-hostnamed

2. Check that the change is taken into account.

$ hostnamectl status

Static hostname: <New hostname>
Pretty hostname: <New hostname>

Icon name: computer-vm
Chassis: vm

Machine ID: 5003025f93c1a84914ea5ae66519c100
Boot ID: f28d5c64f06c48a3a775e24c4f03d00c
Virtualization: kvm

Oerating System: CentOS Linux 7 (Core)
CPE OS Name: cpe:/o:centos:centos:7

Kernel: Linux 3.10.0-957.12.2.el7.x86_64
Architecture: x86-64

3. On the bootstrap node, check the hostname edition incurred a change of status on the bootstrap.
The edited node must be in a NotReady status.

$ kubectl get <node_name>
<node_name> NotReady etcd,master 19h v1.11.7

4. Change the name of the node in the yaml file used to create it. Refer to Creating a Manifest for
more information.

apiVersion: v1
kind: Node
metadata:
name: <New_node_name>
annotations:
metalk8s.scality.com/ssh-key-path: /etc/metalk8s/pki/salt-bootstrap
metalk8s.scality.com/ssh-host: <node control-plane IP>
metalk8s.scality.com/ssh-sudo: 'false'

labels:
metalk8s.scality.com/version: '2.9.0-alpha1'
<role labels>

spec:
taints: <taints>

Then apply the configuration:

$ kubectl apply -f <path to edited manifest>

5. Delete the old node (here <node_name>):

85

MetalK8s Documentation

$ kubectl delete node <node_name>

6. Open a terminal into the Salt Master container:

$ kubectl -it exec salt-master-<bootstrap_node_name> -n kube-system -c salt-master bash

7. Delete the now obsolete Salt Minion key for the changed Node:

$ salt-key -d <node_name>

8. Re-run the deployment for the edited Node:

$ salt-run state.orchestrate metalk8s.orchestrate.deploy_node saltenv=metalk8s-2.9.
→˓0-alpha1 pillar='{"orchestrate": {"node_name": "<new-node-name>"}}'

Summary for bootstrap_master

Succeeded: 11 (changed=9)
Failed: 0

Total states run: 11
Total run time: 132.435 s

9. On the edited node, restart the Kubelet service:

$ systemctl restart kubelet

86 Chapter 18. Changing the hostname of a MetalK8s node

CHAPTER

NINETEEN

USING THE METALK8S-UTILS IMAGE

A MetalK8s installation comes with a container image called metalk8s-utils in the embedded registry.
This image contains several tools an operator can use to analyze a cluster environment or troubleshoot
various system issues.

The image can be used to create a Pod on a node, after which a shell inside the container can be created
to run the various utilities. Depending on the use-case, the Pod could be created using the host network
namespace, the host PID namespace, elevated privileges, mounting host directories as volumes, etc.

See the metalk8s-utils Dockerfile for a list of all packages installed in the image.

19.1 A Simple Shell

To run a metalk8s-utils container as a simple shell, execute the following command:

kubectl run shell \
--image=metalk8s-registry-from-config.invalid/metalk8s-2.9.0-alpha1/metalk8s-utils:2.

→˓9.0-alpha1 \
--restart=Never \
--attach \
--stdin \
--tty \
--rm

This will create a Pod called shell with a container running the metalk8s-utils image, and present you
with a shell in this container.

Note: This procedure expects no other shell Pod to be running. Adjust the name accordingly, or use a
dedicated namespace if conflicts occur.

19.2 A Long-Running Container

In the example above, the lifetime of the container is tied to the invocation of kubectl run. In some
situations it’s more efficient to keep such container running and attach to it (and detach from it) dynam-
ically.

• Create the Pod:

kubectl run shell \
--image=metalk8s-registry-from-config.invalid/metalk8s-2.9.0-alpha1/metalk8s-utils:2.

→˓9.0-alpha1 \
--restart=Never \
--command -- sleep infinity

87

MetalK8s Documentation

This creates the shell Pod including a metalk8s-utils container running sleep infinity, effectivelly
causing the Pod to remain alive until deleted.

• Get a shell in the container:

kubectl exec -ti shell -- bash

Note: The screen and tmux utilities are installed in the image for terminal multiplexing.

• Exit the shell to detach

• Remove the Pod once the container is no longer needed:

kubectl delete pod shell

19.3 A Shell on a Particular Node

To pin the Pod in which the metalk8s-utils container is launched to a particular node, add the following
options to a suitable kubectl run invocation:

--overrides='{ "apiVersion": "v1", "spec": { "nodeName": "NODE_NAME" } }'

Note: In the above, replace NODE_NAME by the desired node name.

19.4 A Shell in the Host Network Namespace

To run a metalk8s-utils container in the host network namespace, e.g., to use utilities such as ip,
iperf or tcpdump as if they’re executed on the host, add the following options to a suitable kubectl run
invocation:

--overrides='{ "apiVersion": "v1", "spec": { "hostNetwork": true } }'

Note: If multiple overrides need to be combined, the JSON objects must be merged.

88 Chapter 19. Using the metalk8s-utils Image

CHAPTER

TWENTY

LISTENING PROCESSES

In MetalK8s context several processes are deployed and they need to communicate with each other,
sometimes locally, sometimes between machines in the cluster, or with the end user.

Depending on their roles, nodes must have several addresses available for MetalK8s processes to bind.

20.1 Listening Processes on Bootstrap Nodes

Address Description
control_plane_ip:4505 Salt master publisher
control_plane_ip:4506 Salt master request server
control_plane_ip:4507 Salt API
control_plane_ip:8080 MetalK8s repository
control_plane_ip:8443 Control plane nginx ingress

20.2 Listening Processes on Master Nodes

Address Description
0.0.0.0:6443 Kubernetes apiserver
127.0.0.1:7080 Apiserver proxy health check
127.0.0.1:7443 Apiserver proxy
control_plane_ip:10257 Kubernetes controller manager
control_plane_ip:10259 Kubernetes scheduler

20.3 Listening Processes on Etcd Nodes

Address Description
127.0.0.1:2379 Etcd client
control_plane_ip:2379 Etcd client
control_plane_ip:2380 Etcd peer
127.0.0.1:2381 Etcd metrics
control_plane_ip:2381 Etcd metrics

89

MetalK8s Documentation

20.4 Listening Processes on All Nodes

Address Description
127.0.0.1:9099 Calico node
0.0.0.0:9100 Node exporter
127.0.0.1:10248 Kubelet health check
0.0.0.0:10249 Kubernetes proxy metrics
control_plane_ip:10250 Kubelet
0.0.0.0:10256 Kubernetes proxy health check

90 Chapter 20. Listening Processes

CHAPTER

TWENTYONE

TROUBLESHOOTING

This section covers some of the common issues users face during and after a MetalK8s operation.

If your issue is not presented here, create a GitHub issue or open a new GitHub discussion.

21.1 Account Administration Errors

21.1.1 Forgot the MetalK8s GUI Password

If you forget the MetalK8s GUI user name or password, refer to Changing Static User Password to reset or
change your credentials.

21.2 General Kubernetes Resource Errors

21.2.1 Pod Status Shows CrashLoopBackOff

If some pods are in a persistent CrashLoopBackOf state, it means that the pods are crashing because
they start up then immediately exit. Kubernetes restarts them and the cycle continues. To find potential
causes of this error, review the output returned from the following command:

[root@bootstrap vagrant]# kubectl -n kube-system describe pods <pod name>
Name: <pod name>
Namespace: kube-system
Priority: 2000000000
Priority Class Name: system-cluster-critical

21.2.2 Persistent Volume Claim (PVC) Stuck in Pending State

If after provisioning a volume for a pod (for example Prometheus) the PVC still hangs in a Pending state,
perform the following checks:

1. Check that the volumes have been provisioned and are in a Ready state.

kubectl describe volume <volume-name>
[root@bootstrap vagrant]# kubectl describe volume test-volume
Name: <volume-name>
Status:

Conditions:
Last Transition Time: 2020-01-14T12:57:56Z
Last Update Time: 2020-01-14T12:57:56Z
Status: True
Type: Ready

91

https://github.com/scality/metalk8s/issues/new/choose
https://github.com/scality/metalk8s/discussions/new

MetalK8s Documentation

2. Check that a corresponding PersistentVolume exists.

[root@bootstrap vagrant]# kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS STORAGECLASS ␣
→˓ AGE CLAIM
<volume-name> 10Gi RWO Retain Bound <storage-class-
→˓name> 4d22h <persistentvolume-claim-name>

3. Check that the PersistentVolume matches the PersistentVolumeClaim constraints (size, labels, stor-
age class).

• Find the name of your PersistentVolumeClaim:

[root@bootstrap vagrant]# kubectl get pvc -n <namespace>
NAME STATUS VOLUME CAPACITY ACCESS MODES ␣
→˓ STORAGECLASS AGE
<persistent-volume-claim-name> Bound <volume-name> 10Gi RWO ␣
→˓ <storage-class-name> 24h

• Check if the PersistentVolumeClaim constraints match:

[root@bootstrap vagrant]# kubectl describe pvc <persistentvolume-claim-name> -n
→˓<namespace>
Name: <persistentvolume-claim-name>
Namespace: <namespace>
StorageClass: <storage-class-name>
Status: Bound
Volume: <volume-name>
Capacity: 10Gi
Access Modes: RWO
VolumeMode: Filesystem

4. If no PersistentVolume exists, check that the storage operator is up and running.

[root@bootstrap vagrant]# kubectl -n kube-system get deployments storage-operator
NAME READY UP-TO-DATE AVAILABLE AGE
storage-operator 1/1 1 1 4d22h

21.2.3 Access to MetalK8s GUI Fails With “undefined backend”

If you encounter an “undefined backend” error while using the MetalK8s GUI, perform the following
checks:

1. Check that the ingress controller pods are running.

[root@bootstrap vagrant]# kubectl -n metalk8s-ingress get daemonsets
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE ␣
→˓NODE SELECTOR AGE
nginx-ingress-control-plane-controller 1 1 1 1 1 ␣
→˓node-role.kubernetes.io/master= 4d22h
nginx-ingress-controller 1 1 1 1 1
→˓<none> 4d22h

2. Check the ingress controller logs.

[root@bootstrap vagrant]# kubectl logs -n metalk8s-ingress nginx-ingress-control-plane-
→˓controller-ftg6v

NGINX Ingress controller
Release: 0.26.1
Build: git-2de5a893a

(continues on next page)

92 Chapter 21. Troubleshooting

MetalK8s Documentation

(continued from previous page)

Repository: https://github.com/kubernetes/ingress-nginx
nginx version: openresty/1.15.8.2

21.2. General Kubernetes Resource Errors 93

MetalK8s Documentation

94 Chapter 21. Troubleshooting

Part III

Developer Guide

95

CHAPTER

TWENTYTWO

ARCHITECTURE DOCUMENTS

22.1 Authentication

22.1.1 Context

Currently, when we deploy MetalK8s we pre-provision a super admin user with a username/password
pair. This implies that anyone wanting to use the K8s/Salt APIs needs to authenticate using this single
super admin user.

Another way to access the APIs is by using the K8s admin certificate which is stored in /etc/kubernetes/
admin.conf. We could also manually provision other users, their corresponding credentials as well as
role bindings but this current approach is inflexible to operate in production setups and security is not
guaranteed since username/password pairs are stored in cleartext.

We would at least like to be able to add different users with different credentials and ideally integrate
K8s authentication system with an external identity provider.

Managing K8s role binding between user/groups high-level roles and K8s roles is not part of this specifi-
cation.

22.1.2 Requirements

Basically, we are talking about:

• Being able to provision users with a local Identity Provider (IDP)

• Being able to integrate with an external IDP

Integration with LDAP and Microsoft Active Directory (AD) are the most important ones to support.

22.1.3 User Stories

Pre-provisioned user and password change

In order to stay aligned with many other applications, it would make sense to have a pre-provisioned
user with all privileges (kind of super admin) and pre-provisioned password so that it is easy to start
interacting with the system through various admin UIs. Whatever UI this user opens for the first time,
the system should ask him/her to change the password for obvious security reasons.

97

MetalK8s Documentation

User Management with local IdP

As an IT Generalist, I want to provision/edit users and high-level roles. The MetalK8s high-level roles
are:

• Cluster Admin

• Solution Admin

• Read Only

This is done from CLI with well-documented procedure. Entered passwords are never visible and en-
crypted when stored in local IDP DB. The CLI tool enables to add/delete and edit passwords and roles.

External IDP Integration

As an IT Generalist, I want to leverage my organisation’s IDP to reuse already provisioned users & groups.
The way we do that integration is through a CLI tool which does not require to have deep knowledge in
K8s or in any local IDP specifics. When External IDP Integration is set up, we can always use local IDP
to authenticate.

Authentication check

UI should make sure the user is well authenticated and if not, redirect to the local IDP login page. In
the local IDP login page, the user should choose between authenticating with local IDP or with external
IDP. If no external IDP is configured, no choice is presented to the user. This local IDP login page should
be styled so that it looks like any other MetalK8s or solutions web pages. All admin UIs should share the
same IDP.

Configuration persistence

Upgrading or redeploying MetalK8s should not affect configuration that was done earlier (i.e. local users
and credentials as well as external IDP integration and configuration)

SSO between Admin UIs

Once IDP is in place and users are provisioned, one authenticated user can easily navigate to the other
admin UIs without having to re-authenticate.

22.1.4 Open questions

• Authentication across multiple sites

• SSO across MetalK8s and solutions Admin UIs and other workload Management UIs

• Our customers may want to collect some statistics out of our Prometheus instances. This API could
be authenticated using OIDC, using an OIDC proxy, or stay unauthenticated. One should consider
the following factors:

– the low sensitivity of the exposed data

– the fact that it is only exposed on the control-plane network

– the fact that most consumers of Prometheus stats are not human (e.g. Grafana, a federating
Prometheus, scripts and others), hence not well-suited for performing the OIDC flow

98 Chapter 22. Architecture Documents

MetalK8s Documentation

22.1.5 Design Choices

Dex is chosen as an Identity Provider(IdP) in MetalK8s based on the above Requirements for the following
reasons:

• Dex’s support for multiple plugins enable integrating the OIDC flow with existing user management
systems such as Active Directory, LDAP, SAML and others.

• Dex can be seamlessly deployed in a Kubernetes cluster.

• Dex provides access to a highly customizable UI which is a step closer to good user experience
which we advocate for.

• Dex can act as a fallback Identity Provider in cases where the external providers become unavailable
or are not configured.

Rejected design choices

Static password file Vs OpenID Connect

Using static password files involves adding new users by updating a static file located on every control-
plane Node. This method requires restarting the Kubernetes API server for every new change introduced.

This was rejected since it is inflexible to operate, requires storing user credentials and there is no support
for a pluggable external identity provider such as LDAP.

X.509 certificates Vs OpenID Connect

Here, each user owns a signed certificate that is validated by the Kubernetes API server.

This approach is not user-friendly that is each certificate has to be manually signed. Providing certificates
for accessing the MetalK8s UI needs much more efforts since these certificates are browser incompatible.
Using certificates is tedious since the certificate revocation process is also cumbersome.

Keycloak Vs Dex

Both systems use OpenID Connect (OIDC) to authenticate a user using a standard OAuth2 flow.

They both offer the ability to have short lived sessions so that user access can be rotated with minimum
efforts.

Finally, they both provide a means for identity management to be handled by an external service such as
LDAP, Active Directory, SAML and others.

Why not Keycloak?

Keycloak while offering similar features as Dex and even much more was rejected for the following
reasons:

• Keycloak is complex to operate (requires its own standalone database) and manage (frequent
database backups are required).

• Currently, no use case exist for implementing a sophisticated Identity Provider like Keycloak when
the minimal Identity Provider from Dex is sufficient.

Note that, Keycloak is considered a future fallback Identity Provider if the need ever arises from a cus-
tomer standpoint.

22.1. Authentication 99

https://github.com/dexidp/dex/

MetalK8s Documentation

Unexploited choices

• Guard

A Kubernetes webhook authentication server by AppsCode, allowing you to log into your Kubernetes
cluster by using various identity providers such as LDAP.

• ORY Hydra

It’s an OpenID Connect provider optimized for low resource consumption. ORY Hydra is not an identity
provider but it is able to connect to existing identity providers.

22.1.6 Implementation Details

Iteration 1

• Using Salt, generate self-signed certificates needed for Dex deployment

• Deploy Dex in MetalK8s from the official Dex Charts while making use of the generated certificates
above

• Provision an admin super user

• Configure Kubernetes API server flags to use Dex

• Expose Dex on the control-plane using Ingress

• Print the admin super user credentials to the CLI after MetalK8s bootstrap is complete

• Implement MetalK8s UI integration with Dex

• Theme the Dex GUI to match MetalK8s UI specs (optional for iteration 1)

Iteration 2

• Provide documentation on how to integrate with these external Identity Providers especially LDAP
and Microsoft Active Directory.

Iteration 3

• Provide Single sign-on(SSO) for Grafana

• Provide SSO between admin UIs

Iteration 4

• Provide a CLI command to change the default superuser password as a prompt after bootstrap

• Provide a CLI for user management and provisioning

The following operations will be supported using the CLI tool:

• Create users password

• List existing passwords

• Delete users password

• Edit existing password

The CLI tool will also be used to create MetalK8s dedicated roles as already specified in the requirements
section of this document (see high-level roles from the requirements document).

Since it is not advisable to perform the above mentioned operations at the Dex ConfigMap level, using
the Dex gRPC API could be the way to go.

100 Chapter 22. Architecture Documents

https://github.com/appscode/guard/
https://github.com/ory/hydra/

MetalK8s Documentation

Iteration 5

• Demand for a superuser’s default password change upon first UI access

• Provide UI integration that performs similar CLI operations for user management and provisioning

This means from the MetalK8s UI, a Cluster administrator should be able to do the following:

• Create passwords for users

• List existing passwords

• Delete users password

• Edit existing password

Note: This iteration is completely optional for reasons being that the Identity Provider from Dex acts
as a fallback for Kubernetes Administrators who do not want to use an external Identity Provider(mostly
because they have a very small user store).

22.1.7 Documentation

In the Operational Guide:

• Document the predefined Dex roles (Cluster Admin, Solution Admin, Read Only), their access
levels and how to create them.

• Document how to create users and the secrets associated to them.

• Document how to integrate Dex with external Identity Providers such as LDAP and Microsoft Active
Directory.

In the Installation/Quickstart Guide

• Document how to setup/change the superuser password

22.1.8 Test Plan

We could add some automated end-to-end tests for Dex user creation, and deletion using the CLI and
then setup a mini-lab on scality cloud to try out the UI integration.

22.2 Deployment

Here is a diagram representing how MetalK8s orchestrates deployment on a set of machines:

22.2. Deployment 101

MetalK8s Documentation

102 Chapter 22. Architecture Documents

MetalK8s Documentation

22.2.1 Some notes

• The intent is for this installer to deploy a system which looks exactly like one deployed using
kubeadm, i.e. using the same (or at least highly similar) static manifests, cluster ConfigMaps, RBAC
roles and bindings, . . .

The rationale: at some point in time, once kubeadm gets easier to embed in larger deployment mecha-
nisms, we want to be able to switch over without too much hassle.

Also, kubeadm applies best-practices so why not follow them anyway.

Configuration

To launch the bootstrap process, some input from the end-user is required, which can vary from one
installation to another:

• CIDR (i.e. x.y.z.w/n) of the control plane networks to use

Given these CIDR, we can find the address on which to bind services like etcd, kube-apiserver,
kubelet, salt-master and others.

These should be existing networks in the infrastructure to which all hosts are connected.

This is a list of CIDRs, which will be tried one after another, to find a matching local interface (i.e.
hosts comprising the cluster may reside in different subnets, e.g. control plane in VMs, workload
plane on physical infrastructure).

• CIDRs (i.e. x.y.z.w/n) of the workload plane networks to use

Given these CIDRs, we can find the address to be used by the CNI overlay network (i.e. Calico) for
inter-Pod routing.

This can be the same as the control plane network.

• CIDR (i.e. x.y.z.w/n) of the Pod overlay network

Used to configure the Calico IPPool. This must be a non-existing network in the infrastructure.

Default: 10.233.0.0/16

• CIDR (i.e. x.y.z.w/n) of the Service network

Default: 10.96.0.0/12

Firewall

We assume a host-based firewall is used, based on firewalld. As such, for any service we deploy which
must be accessible from the outside, we must set up an appropriate rule.

We assume SSH access is not blocked by the host-based firewall.

These services include:

• HTTPS on the bootstrap node, for nginx fronting the OCI registry and serving the yum repository

• salt-master on the bootstrap node

• etcd on control-plane / etcd nodes

• kube-apiserver on control-plane nodes

• kubelet on all cluster nodes

22.2. Deployment 103

MetalK8s Documentation

22.3 Monitoring

This document describes the monitoring features included in MetalK8s.

22.4 Cluster and Services Configurations and Persistence

22.4.1 Context

MetalK8s comes with a set of tools and services that may need to be configured on site. At the same
time, we don’t want the administrator of the cluster to master each and every service of the cluster. We
also don’t want to allow all kind of configurations since it would make the system even more complex to
test and maintain over time.

In addition to those services, MetalK8s deployment may have to be adapted depending on the architec-
ture of the platform or depending on the different use cases and applications running on top of it.

It can be:

• The BootstrapConfig,

• The various roles and taints we set on the node objects of the cluster

• The configurations associated to solutions, such as the list of available solutions, the environments
and namespaces created for a solution

Be it services or MetalK8s configurations, we need to ensure it is persisted and resilient to various type
of events such as node reboot, upgrade, downgrade, backup, restore.

22.4.2 Requirements

User Stories

Available Settings

As a cluster administrator, I have access to a finite list of settings I can customize on-site in order to
match with my environment specificities:

• List of static users and credentials configured in Dex

• Integration with an external IDP configuration in Dex

• Existing Prometheus rules edition and new rules addition

• Alert notifications configuration in Alert Manager

• New Grafana dashboards or new Grafana datasources

• Number of replicas for the Prometheus, Alert Manager, Grafana or Dex deployments

• Changing the path on which the MetalK8s UI is deployed

• Modifying OIDC provider, client ID or scopes

• Adding custom menu entries

Note: Other items will appear as we add new configurable features in MetalK8s

104 Chapter 22. Architecture Documents

MetalK8s Documentation

Settings Documentation

As a cluster administrator, I have access to a documented list of settings I can configure in the Operational
Guide.

Persistence of Configurations

As a cluster administrator, I can upgrade or downgrade my cluster without losing any of the customised
settings described above.

Backup and Restoration

As a cluster administrator, when I am doing a backup of my cluster, I backup all the customised settings
described above and I can restore it when restoring the MetalK8s cluster or I can re apply part or all of it
on a fresh new cluster.

Expert-mode Access

As a MetalK8s expert, I can use kubectl command(s) in order to edit all settings that are exposed. The
intent is to have a method / API that an expert could use, if the right CLI tool or GUI is not available or
not functioning as expected.

22.4.3 Design Choices

ConfigMap is chosen as a unified data access and storage media for cluster and service configurations in
a MetalK8s cluster based on the above requirements for the following reasons:

• Ability to support Update operations on ConfigMaps with CLI and UI easily using our already
existing python kubernetes module.

• Guarantee of adaptability and ease of changing the design and implementation in cases where
customer needs evolve rapidly.

• ConfigMaps are stored in the etcd database which is generally being backed up. This ensures that
user settings cannot be lost easily.

How it works

During Bootstrap, Upgrade or Downgrade stages, when we are assertive that the K8s cluster is fully ready
and available we could perform the following actions:

• Firstly, create and deploy ConfigMaps that will hold customizable cluster and service configura-
tions. These ConfigMaps should define an empty config.yaml in the data section of the ConfigMap
for later use.

A standard layout for each customizable field could be added in the documentation to assist Met-
alK8s administrator in adding and modifying customizations.

To simplify the customizing efforts required from MetalK8s administrators, each customizable Con-
figMap will include an example section with inline documented directives that highlight how users
should add, edit and remove customizations.

• In an Addon config file for example; salt/metalk8s/addons/prometheus-
operator/config/alertmanager.yaml, define the keys and values for default service configurations in
a YAML structured format.

– The layout of service configurations within this file could follow the format:

22.4. Cluster and Services Configurations and Persistence 105

MetalK8s Documentation

Configuration of the Alertmanager service
apiVersion: addons.metalk8s.scality.com/v1alpha1
kind: AlertmanagerConfig
spec:

Configure the Alertmanager Deployment
deployment:

replicas: 1

• During Addon manifest rendering, call a Salt module that will merge the configurations defined
within the customizable ConfigMap to those defined in alertmanager.yaml using a Salt merge strat-
egy.

Amongst other merge technique such as aggregate, overwrite, list, the recurse merge technique is
chosen to merge the two data structures because it allows deep merging of python dict objects
while being able to support the aggregation of list structures within the python object.

Aggregating list structures is particularly useful when merging the pre-provisioned Dex static users
found in the default configurations to those newly defined by Administrators especially during
upgrade. Without support for list merge, pre-provisioned Dex static users will be overwritten
during merge time.

Recurse merge strategy example:

Merging the following structures using salt.utils.dictupdate.merge:

– Object (a) (MetalK8s defaults):

apiVersion: addons.metalk8s.scality.com/v1alpha1
kind: AlertmanagerConfig
spec:

deployment:
replicas: 1

– Object (b) (User-defined configurations from ConfigMap):

apiVersion: addons.metalk8s.scality.com/v1alpha1
kind: AlertmanagerConfig
spec:

deployment:
replicas: 2

notification:
config:

global:
resolve_timeout: 5m

– Result of Salt recurse merge:

apiVersion: addons.metalk8s.scality.com/v1alpha1
kind: AlertmanagerConfig
spec:

deployment:
replicas: 2

notification:
config:

global:
resolve_timeout: 5m

The resulting configuration (a python object) will be used to populate the desired configuration
fields within each Addon chart at render time.

The above approach is flexible and fault tolerant because in a MetalK8s cluster, once the user-defined
ConfigMaps are absent or empty during Addon deployment, merging will yield no changes and we can
effectively use default values packaged alongside each MetalK8s Addon to run the deployment.

106 Chapter 22. Architecture Documents

MetalK8s Documentation

Using Salt states

Once a ConfigMap is updated by the user (say a user changes the number of replicas for Prometheus
deployments to a new value), then perform the following actions:

• Apply a Salt state that reads the ConfigMap object, validates the schema and checks the new values
passed and re-applies this configuration value to the deployment in question.

• Restart the Kubernetes deployment to pickup newly applied service configurations.

Storage format

A YAML (K8s-like) format was chosen to represent the data field instead of a flat key-value structure for
the following reasons:

• YAML formatted configurations are easy to write and understand hence it will be simpler for users
to edit configurations.

• The YAML format benefits from bearing a schema version, which can be checked and validated
against a version we deploy.

• YAML is a format for describing hierarchical data structures, while using a flat key-value format
would require a form of encoding (and then, decoding) of this hierarchical structure.

A sample ConfigMap can be defined with the following fields.

apiVersion: v1
kind: ConfigMap
metadata:
namespace: <namespace>
name: <config-name>

data:
config.yaml: |-

apiVersion: <object-version>
kind: <kind>
spec:
<key>: <values>

Use case 1:

Configure and store the number of replicas for service specific Deployments found in the metalk8s-
monitoring namespace using the ConfigMap format.

apiVersion: v1
kind: ConfigMap
metadata:
namespace: metalk8s-monitoring
name: metalk8s-grafana-config

data:
config.yaml: |-

apiVersion: metalk8s.scality.com/v1alpha1
kind: GrafanaConfig
spec:
deployment:

replicas: 2

22.4. Cluster and Services Configurations and Persistence 107

MetalK8s Documentation

Non-goals

This section contains requirements stated above which the current design choice does not cater for and
will be addressed later:

• Persisting newly added Grafana dashboards or new Grafana datasources especially for modifica-
tions added via the Grafana UI cannot be stored in ConfigMaps and hence will be catered for later.

• As stated in the requirements, adding and editing Prometheus alert rules is also not covered by the
chosen design choice and will need to be addressed differently. Even if we could use ConfigMaps for
Prometheus rules, we prefer relying on the Prometheus Operator and it’s CRD (PrometheusRule).

Rejected design choices

Consul KV vs ConfigMap

This approach offers a full fledge KV store with a /kv endpoint which allows CRUD operations on all
KV data stored in it. Consul KV also allows access to past versions of objects and has an optimistic
concurrency when manipulating multiple objects.

Note that, Consul KV store was rejected because managing operations such as performing full backups,
system restores for a full fledged KV system requires time and much more efforts than the ConfigMap
approach.

Operator (Custom Controller) vs Salt

Operators are useful in that, they provide self-healing functionalities on a reactive basis. When a user
changes a given configuration, it is easy to reconcile and apply these changes to the in-cluster objects.

The Operator approach was rejected because it is much more complex, requires much more effort to
realize and there is no real need for applying changes using this method because configuration changes
are not frequent (for a typical MetalK8s admin, changing the number of replicas for a given deployment
could happen once in 3 months or less) as such, having an operator watch for object changes is not
significant and not very useful at this point in time.

In the Salt approach, Salt Formulas are designed to be idempotent ensuring that service configuration
changes can be applied each time a new configuration is introduced.

22.4.4 Implementation Details

Iteration 1

• Define and deploy new ConfigMap stores that will hold cluster and service configurations as listed
in the requirements. For each ConfigMap, define its schema, its default values, and how it impacts
the configured services

• Template and render Deployment and Pod manifests that will make use of this persisted cluster
and service configurations

• Document how to change cluster and service configurations using kubectl

• Document the entire list of configurations which can be changed by the user

108 Chapter 22. Architecture Documents

MetalK8s Documentation

Iteration 2

• Provide a CLI tool for changing any of the cluster and service configurations:

– Count of replicas for chosen Deployments (Prometheus)

– Updating a Dex authentication connector (OpenLDAP, AD and staticUser store)

– Updating the Alertmanager notification configuration

• Provide a UI interface for adding, updating and deleting service specific configurations for example
Dex-LDAP connector integration.

• Provide a UI interface for listing MetalK8s available/supported Dex authentication Connectors

• Provide a UI interface for enabling or disabling Dex authentication connectors (LDAP, Active Direc-
tory, StaticUser store)

• Add a UI interface for listing Alertmanager notification systems MetalK8s will support (Slack,
email)

• Provide a UI interface for adding, modifying and deleting Alertmanager configurations from the
listing above

22.4.5 Documentation

In the Operational Guide:

• Document how to customize or change any given service settings using the CLI tool

• Document how to customize or change any given service settings using the UI interface

• Document the list of service settings which can be configured by the user

• Document the default service configurations files which are deployed along side MetalK8s addons

22.4.6 Test Plan

• Add test that ensures that update operations on user configurations are propagated down to the
various services

• Add test that ensures that after a MetalK8s upgrade, we do not lose previous customizations.

• Other corner cases that require testing to reduce error prone setups include:

– Checking for invalid values in a user defined configuration (e.g setting the number of replicas
to a string (“two”))

– Checking for invalid formats in a user configuration

• Add tests to ensure we could merge a service configuration at render time while keeping user-
defined modifications intact

22.5 Alerting Functionalities

22.5.1 Context

MetalK8s is automatically deploying Prometheus, Alertmanager and a set of predefined alert rules. In
order to leverage Prometheus and Alertmanager functionalities, we need to explain, in the documenta-
tion, how to use it. In a later stage, those functionalities will be exposed through various administration
and alerting UIs, but for now, we want to provide our administrator with enough information in order to
use very basic alerting functionalities.

22.5. Alerting Functionalities 109

MetalK8s Documentation

22.5.2 Requirements

As a MetalK8s administrator, I want to list or know the list of alert rules that are deployed on MetalK8s
Prometheus cluster, In order to identify on what specific rule I want to be alerted.

As a MetalK8s administrator, I want to set notification routing and receiver for a specific alert, In order
to get notified when such alert is fired The important routing to support are email, slack and pagerduty.

As a MetalK8s administrator, I want to update thresholds for a specific alert rule, In order to adapt the
alert rule to the specificities and performances of my platform.

As a MetalK8s administrator, I want to add a new alert rule, In order to monitor a specific KPI which is
not monitored out of the box by MetalK8s.

As a MetalK8s administrator, I want to inhibit an alert rule, In order to skip alerts in which I am not
interested.

As a MetalK8s administrator, I want to silence an alert rule for a certain amount of time, In order to skip
alert notifications during a planned maintenance operation.

Warning: In all cases, when MetalK8s administrator is upgrading the cluster, all listed customizations
should remain.

Note: Alertmanager configuration documentation is available here

22.5.3 Design Choices

To be able to edit existing rules, add new ones, etc., and in order to keep these changes across restora-
tions, upgrades and downgrades, we need to put in place some mechanisms to configure Prometheus
and Alertmanager and persist these configurations.

For the persistence part, we will rely on what has been done for CSC (Cluster and Services Configura-
tions), and use the already defined resources for Alertmanager and Prometheus.

Extra Prometheus Rules

We will use the already existing metalk8s-prometheus-config ConfigMap to store the Prometheus con-
figuration customizations.

Adding extra alert and record rules will be done editing this ConfigMap under the spec.extraRules key
in config.yaml as follows:

apiVersion: v1
kind: ConfigMap
metadata:

name: metalk8s-prometheus-config
namespace: metalk8s-monitoring

data:
config.yaml: |-

apiVersion: addons.metalk8s.scality.com
kind: PrometheusConfig
spec:
deployment:

replicas: 1
extraRules:

groups:
- name: <rulesGroupName>

(continues on next page)

110 Chapter 22. Architecture Documents

https://prometheus.io/docs/alerting/configuration/

MetalK8s Documentation

(continued from previous page)

rules:
- alert: <AlertName>

annotations:
description: description of what this alert is

expr: vector(1)
for: 10m
labels:

severity: critical
- alert: <AnotherAlertName>

[...]
- record: <recordName>

[...]
- name: <anotherRulesGroupName>
[...]

PromQL is to be used to define expr field.

This spec.extraRules entry will be used to generate through Salt a PrometheusRule object named
metalk8s-prometheus-extra-rules in the metalk8s-monitoring namespace, which will be automati-
cally consumed by the Prometheus Operator to generate the new rules.

A CLI and UI tooling will be provided to show and edit this configuration.

Edit Existing Prometheus Alert Rules

To edit existing Prometheus rules, we can’t only define new PrometheusRules resources since Prometheus
Operator will not overwrite those already existing, but will rather append them to the list of rules, ending
up with 2 rules with the same name but different parameters.

We also can’t edit the PrometheusRules deployed by MetalK8s, otherwise we would lose these changes
in case of cluster restoration, upgrade or downgrade.

So, in order to allow the user to customize the alert rules, we will pick up some of them (the most
relevant ones) and expose only few parts of their configurations (e.g. threshold) to be customized.

It also makes the customization of these alert rules easier for the user as, for example, he will not need
to understand PromQL to adapt the threshold of an alert rule.

Since in Prometheus rules, there are duplicated group name + alert rule name, we also need to take the
severity into account to understand which specific alert we’re editing.

These customization will be stored in the metalk8s-prometheus-config ConfigMap with something like:

apiVersion: v1
kind: ConfigMap
metadata:

name: metalk8s-prometheus-config
namespace: metalk8s-monitoring

data:
config.yaml: |-

apiVersion: addons.metalk8s.scality.com
kind: PrometheusConfig
spec:
deployment:

replicas: 1
rules:

<alertGroupName>:
<alertName>:
warning:

threshold: 30
critical:

threshold: 10

(continues on next page)

22.5. Alerting Functionalities 111

https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/

MetalK8s Documentation

(continued from previous page)

<anotherAlertGroupName>:
<anotherAlertName>:

critical:
threshold: 20
anotherThreshold: 10

The PrometheusRules object manifests salt/metalk8s/addons/prometheus-operator/deployed/chart.
sls need to be templatized to consume these customizations through CSC module.

Default values for customizable alert rules to fallback on, if not defined in the ConfigMap, will be set in
salt/metalk8s/addons/prometheus-operator/config/prometheus.yaml.

Custom Alertmanager Configuration

We will use the already existing metalk8s-alertmanager-config ConfigMap to store the
term:Alertmanager configuration customizations.

A Salt module will be developed to manipulate this object, so the logic can be kept in only one place.

This module must provide necessary methods to show or edit the configuration in 2 different ways:

• simple

• advanced

The simple mode will only display and allow to change some specific configuration, such as the receivers
or the inhibit rules, and in an as simple as possible manner for the user.

The advanced mode will allow to change all the configuration points, exposing the whole configuration
as a plain YAML.

This module will then be exposed through a CLI and a UI.

Retrieve Alert Rules List

To retrieve the list of alert rules, we must use the Prometheus API. This can be achieved using the
following route:

http://<prometheus-ip>:9090/api/v1/rules

This API call should be done in a Salt module metalk8s_monitoring which could then be wrapped in a
CLI and UI.

Silence an Alert

To silence an alert, we need to send a query to the Alertmanager API. This can be done using the following
route:

http://<alertmanager-ip>:9093/api/v1/silences

With a POST query content formatted as below:

{
"matchers": [

{
"name": "alert-name",
"value": "<alert-name>"

}
],
"startsAt": "2020-04-10T12:12:12",

(continues on next page)

112 Chapter 22. Architecture Documents

https://prometheus.io/docs/prometheus/latest/querying/api

MetalK8s Documentation

(continued from previous page)

"endsAt": "2020-04-10T13:12:12",
"createdBy": "<author>",
"comment": "Maintenance is planned",
"status": {

"state": "active"
}

}

We must also be able to retrieve silenced alerts and to remove a silence. This will be done using the API,
with the same route using GET and DELETE word respectively:

GET - to list all silences
http://<alertmanager-ip>:9093/api/v1/silences

DELETE - to delete a specific silence
http://<alertmanager-ip>:9093/api/v1/silence/<silence-id>

We will need to provide these functionnalities through a Salt module metalk8s_monitoring which could
then be wrapped in a CLI and UI.

22.5.4 Extract Rules Tooling

We need to build a tool to extract all alert rules from the Prometheus Operator rendered chart salt/
metalk8s/addons/prometheus-operator/deployed/chart.sls.

Its purpose will be to generate a file (each time this chart is updated) which will then be used to check
that what’s deployed matches what was expected.

And so, we will be able to see what has been changed when updating Prometheus Operator chart and see
if there is any change on customizable alert rules.

22.5.5 Rejected Design Choices

Using amtool vs Alertmanager API

Managing alert silences can be done using amtool:

Add
amtool --alertmanager.url=http://localhost:9093 silence add \

alertname="<alert-name>" --comment 'Maintenance is planned'

List
amtool --alertmanager.url=http://localhost:9093 silence query

Delete
amtool --alertmanager.url=http://localhost:9093 silence expire <silence-id>

This option has been rejected because, to do so, we need to install an extra dependency (amtool binary)
or run the commands inside the Alertmanager container, rather than simply send HTTP queries on the
API.

22.5. Alerting Functionalities 113

https://github.com/prometheus/alertmanager/blob/master/README.md#amtool
https://github.com/prometheus/alertmanager/blob/master/README.md#amtool

MetalK8s Documentation

22.5.6 Implementation Details

Iteration 1

• Add an internal tool to list all Prometheus alert rules from rendered chart

• Implement Salt formulas to handle configuration customization (advanced mode only)

• Provide CLI and UI to wrap the Salt calls

• Customization of node-exporter alert group thresholds

• Document how to:

– Retrieve the list of alert rules

– Add a new alert rule

– Edit an existing alert rule

– Configure notifications (email, slack and pagerduty)

– Silence an alert

– Deactivate an alert

Iteration 2

• Implement the simple mode in Salt formulas

• Add the simple mode to both CLI and UI

• Update the documentation with the simple mode

22.5.7 Documentation

In the Operational Guide:

• Document how to manage silence on alerts (list, create & delete)

• Document how to manage alert rules (list, create, edit)

• Document how to configure alertmanager notifications

• Document how to deactivate an alert

• Add a list of alert rules configured in Prometheus, with a brief explanation for each and what can
be customized

22.5.8 Test Plan

Add a new test scenario using pytest-bdd framework to ensure the correct behavior of this feature. These
tests must be put in the post-merge step in the CI and must include:

• Configuration of a receiver in Alertmanager

• Configuration of inhibit rules in Alertmanager

• Add a new alert rule in Prometheus

• Customize an existing alert rule in Prometheus

• Alert silences management (add, list and delete)

• Deployed Prometheus alert rules must match what’s expected from a given list (generated by a tool
Extract Rules Tooling)

114 Chapter 22. Architecture Documents

MetalK8s Documentation

22.6 Centralized CLI

22.6.1 Context

MetalK8s comes with a set of services to operate and monitor the K8s cluster. All operations that need to
be performed by the Platform Administrator could be categorized as follow:

• Cluster Resources Administration (Nodes, Volumes, Deployments, . . .)

• Cluster Administration (Install, Upgrade, Downgrade, Backup, Restore, . . .)

• Solution Administration (CRUD Environment, Import/Remove Solution, . . .)

• Cluster Service Administration (Configure Dex, Prometheus, Alert Manager, . . .)

K8s provides the kubectl CLI, enabling all kind of interactions with all Kubernetes resources, through k8s
apiserver, but its usage often requires to build verbose YAML files. Also it does not leverage everything
MetalK8s exposes through the salt API. It is shipped as an independent package and can be deployed
and run from anywhere, on any OS.

Currently, MetalK8s provides other set of scripts or manual procedures, but those are located in various
locations, their usage may vary and they are not developed using the same logic.

This makes the CLI and associated documentation not super intuitive and it also makes the maintenance
more expensive in the long term.

The goal of the project is to provide MetalK8s administrator with an intuitive and easy to use set of tools
in order to administrate and operate a finite set of functionalities.

Because kubectl is already in place and is well known by Kubernetes administrators, it will be used as a
standard to follow, as much as possible, for all other MetalK8s CLIs:

• CLI provides an exhaustive help, per action, with relevant examples

• CLI provides <action> help when the command is not valid

• CLI is not interactive (except if password input is needed)

• CLI should not require password input

• CLI provides a dryrun mode for intrusive operations

• CLI provides a verbose (or debug) mode

• CLI implementation relies on secure APIs

• CLI support action completion for easy discovery

• CLI output is standardized and human readable by default

• CLI output can be formatted in JSON or YAML

When it is possible, it would make sense to leverage kubectl plugin

Most functionalities are exposed through 2 distinct CLI:

• kubectl: enriched with metalk8s plugin, to interact with both k8s apiserver and salt API, and that
can be executed from outside of the cluster.

• metalk8sctl: a new CLI, exposing specific MetalK8s functionalities, that are not interacting with
k8s apiserver, and that must be executed on cluster node host.

Some cluster configurations will be achievable through documented procedures, such as changing one
cluster server hostname.

Other specific solution kubectl plugin may also be provided by a solution.

To know which command must be used, administrator will rely on MetalK8s documentation. Documen-
tation will be updated accordingly.

22.6. Centralized CLI 115

MetalK8s Documentation

In order to operate the cluster with kubectl plugins from outside of the cluster, plugin binary will be
available for download from the bootstrap node or from MetalK8s release repository. The metalk8sctl
and kubectl are deployed and available by default on bootstrap nodes.

22.6.2 Requirements

Not listing all commands that are already available through kubectl. Only describing commands that are
missing or commands that can be simplified using new command line arguments.

Cluster Resources Administration

tool: kubectl metalk8s

ac-
tion

resource
type

resource
id

parameters

create node name ssh-user, hostname or ip, ssh port ssh-key-path, sudo-required,
roles

de-
ploy

node name. . . <dry-run>

create volume name type, nodeName, storageClassName, <devicePath>, <size>,
<labels>

Cluster Administration

tool: metalk8sctl

Resource action parameters
bootstrap deploy
archive import path_to_iso
archive get <name>
archive delete path_to_iso or path_to_mountpoint or name
cluster upgrade dest-version, <dry-run>
cluster downgrade dest-version, <dry-run>
etcd health
bootstrap backup
bootstrap restore backup-file

Solution Administration

Note: Import and unimport of solution are done the same way as MetalK8s archive using metalk8sctl
archive import

tool: metalk8sctl

Resource action parameters
solution activate name, version
solution deactivate name
solution get <name>, <version>

tool: kubectl metalk8s

116 Chapter 22. Architecture Documents

MetalK8s Documentation

action resource type parameters
create environment name, <description>, <namespace>
delete environment name, <namespace>
get environment <name>
add solution name, version, environment, <namespace>
delete solution name, environment, <namespace>
get solution <name>, environment

Cluster Service Administration

tool: kubectl metalk8s

action resource type resource id parameters
The following edit commands are doing both configuration update and applying the configuration.
edit grafana-config name open an editor
edit am-config name open an editor
edit prom-config name open an editor
edit dex-config name open an editor

22.6.3 Design Choices

Two distinct CLI:

• a metalk8s kubectl plugin with subcommands to interact with Kubernetes API, and Salt API if
needed.

• a metalk8sctl CLI with subcommands for action that need to interact with the local machine, but
may also interact with Kubernetes API and Salt API if needed.

metalk8s kubectl plugin

Language

Go is chosen as the language for kubectl plugin for the following reasons:

• Great interactions with Kubernetes API.

• Often used for operators and kubectl plugins (Sample CLI plugin, Helpers for kubectl plugins).

• Easy to ship because it’s a statically compiled binary, no deps to provide.

• Simple deployment (no real requirements), just drop a binary in the PATH.

Input and Output

Each command should follow the kubectl style and standard as much as possible:

• Command style:

kubectl metalk8s <action> <resource>

• Interactive:

No interaction with the user, except when it’s an edit command an editor is opened (if needed)
and when a password is required a prompt appears to ask it.

22.6. Centralized CLI 117

https://github.com/kubernetes/sample-cli-plugin
https://github.com/kubernetes/cli-runtime

MetalK8s Documentation

• Output style:

Default human-readable output (<object> <action>ed).

A --output, -o option to change output format, at least support for json and yaml (jsonpath and
go-template when it’s possible).

Internally each action result should be an “object” (e.g.: single-level dictionary) containing several
informations, at least:

– name

– message

– result (True or False)

– an elapsed time (to know each action time)

A --verbose, -v option to change log level verbosity (default output to stderr), using Kubernetes
log library.

By default each command will wait for a result but, when it’s possible, a --async option should
allow to do not wait for a result and just output an ID (e.g.: Job ID for Salt) that can be used to
watch for the result.

SaltAPI interaction

If the plugin needs to access Salt API then it should use the service proxy http://<apiserver_host>/
api/v1/namespaces/kube-system/services/https:salt-master:api/proxy/.

For each and every Salt API call plugin will need authentication on apiserver to access the Salt API service
proxy and also to Salt API.

Note: Right now, Salt API only accepts authentication using Bearer token, but in kubeconfig we could
have certificates authentication so this kind of kubeconfig will not work with this kubectl plugin.

Add support for certificates based authentication in Salt API look quite hard and costly.

Deployment

Plugin should be developed as one single binary kubectl-metalk8s available from the ISO, easy buildable
from GitHub repository and also as a System Package for Operating System supported by MetalK8s.

The package should install the plugin in /usr/bin directory by default.

This package should be installed on the bootstrap node by default.

Rejected design choice

• Bash kubectl plugin: Bash is great to do simple actions but not when you need to do interaction
with some API like Kubernetes API or Salt API.

• Python kubectl plugin: Python allows us to do complicated actions and great interactions with APIs
but interactions between Go and Kubernetes are much easier, given the large number of example
available.

118 Chapter 22. Architecture Documents

https://github.com/kubernetes/klog
https://github.com/kubernetes/klog

MetalK8s Documentation

metalk8sctl CLI

Language

Python is chosen as the language for metalk8sctl for the following reasons:

• Ability to interact with Salt Python client API.

• Python installation needed anyway by Salt-minion.

Note: Python version 3 will be used as version 2 is end of life since beginning of 2020.

Input and Output

• Command style:

metalk8sctl <resource> <action>

• Interactive:

Never.

• Output style:

Human readable output, do not necessarily need for “machine output” like JSON and YAML.

The output should display useful information from Salt returns when needed, and in case of error,
only show relevant error message(s) from Salt.

Salt interaction

All Salt interaction should be done using Salt Python client API and not use the salt-call, salt,
salt-run binary at all.

This Salt Python client API allows us to interact with Salt-master directly from the host machine as
Python API directly acts on the Salt sockets and does not need to execute a command inside the Salt-
master container.

Deployment

metalk8sctl should be available from the ISO and also as a System Package for Operating System sup-
ported by MetalK8s.

This package should be installed on the bootstrap node automatically after a fresh install.

As this CLI is used to do the first bootstrap deployment we will need another script (likely bash) to
configure local repositories and install metalk8sctl package with all dependencies.

Note: This CLI cannot run from outside of the cluster and need to have root access on the machine to
run.

That’s why this CLI do not need any specific authentication on the cluster itself, interaction with all
machines will be done using Salt.

22.6. Centralized CLI 119

https://docs.saltstack.com/en/latest/ref/clients/index.html
https://docs.saltstack.com/en/latest/ref/clients/index.html
https://docs.saltstack.com/en/latest/ref/clients/index.html

MetalK8s Documentation

Rejected design choice

• bash MetalK8s CLI: Bash is great to do simple actions but not when you need to do interaction with
Salt, Salt API, and Kubernetes API.

• Do not follow kubectl style for the command (<action> <resource>), it does not make sense
to regroup command per action as actions are really different and this CLI only manages a few
resources.

22.6.4 Implementation Details

Two different projects that can be started in parallel.

First have a simple framework to implement a simple command, then each command would update the
framework if needed.

Check Requirements for a full list of commands.

22.6.5 Documentation

All command should be documented in the Operational Guide with a reference to it when it’s needed in
the Installation Guide.

All commands and sub-commands should have a --help option to explain a bit of usage of this specific
command and available options.

22.6.6 Test plan

For metalk8sctl:

• Add unit tests for internal functions using Pytest

• Most of the command are already used during functional test (some may need to be added in
PyTest BDD)

For metalk8s kubectl plugin:

• Add unit tests for internal functions using Golang testing framework

• Add functional test for all plugin commands in PyTest BDD

22.7 MetalK8s UI adaptation

MetalK8s UI needs adaptation, so that it fits with shell & microfrontends architecture. In the long term,
MetalK8s UI always runs with a Shell Nav bar. MetalK8s also provides a secondary lateral Nav bar.

The MetalK8s secondary lateral Nav bar should contains entries that are specific to MetalK8s micro
application. Features like login/logout, switching from dark to light mode or switching language are to
be exposed in the Shell Nav bar.

The MetalK8s UI exposes MetalK8s operations to users having Platform Administrator role. It also pro-
vides High Level Monitoring and Alerting views in order for the Platform Administrator to understand
the health and the performances of the platform.

The platform entities to operate and monitor are:

• the Hardware entities (servers, disks, raids, interfaces or Network)

• the OS and k8s system services (kubelet and conatinerd)

• the Kubernetes services (etcd, apiserver, scheduler)

120 Chapter 22. Architecture Documents

https://golang.org/pkg/testing/

MetalK8s Documentation

• the Kubernetes entities (Nodes, Volumes)

• the specific MetalK8s services (Monitoring, Alerting, Logging, Authentication, Ingress)

22.7.1 MetalK8s Operations

• Cluster administration (upgrade, downgrade, backup, restore)

• Cluster nodes provisioning (adding/removing nodes, configuring nodes)

• Volume provisioning (adding/removing Volumes, configuring volumes)

• Solution lifecycle (adding/deleting envs, activate/adding solutions)

• MetalK8s services administration (configuring alerts, scaling service)

• roles and security policies management

Some of the operations are not exposed through API and thus cannot be exposed in the UI. The operations
that are accessible in the UI are served through either K8S or Salt APIs. Not all operations are critical to
have in the UI.

Some operations, such as cluster expansion or volume addition can be time consuming. MetalK8s UI
should provide some indication of the progress and ETA. It should also provide easy way to debug and
investigate when things go wrong. Thus logs associated to an expansion or volume provisioning should
be easily accessible from MetalK8s UI.

Last but not least, all important operations performed on the platform (such as adding/removing a
node, upgrading the cluster, . . .) should be logged. Browsing the history of those operations should be
accessible from MetalK8s UI.

22.7.2 MetalK8s Monitoring

Health

The Health of the system as well as the health of any specific entity of the system, is determined by the
existence of an active alert, with a specific severity on it. It is probably needed to filter out some alerts
that must not be taken in account to determine the health of any system entity.

The Global health of the platform is either a magic combination of some important entity alerts, either a
specific Scality alert delivered with MetalK8s.

Performance

Some perf kpis & charts are available for each entity or group of entities. The aim of those charts is not
to replace the Grafana dashboards but to give some high level and synthetic views, focused on what’s
matter the most for the MetalK8s Platform administrator.

22.7.3 MetalK8s Pages

Overview / Landing Page

As a Platform Administrator, I Want to visualize the key components and services of the platform, In
order to understand how the platform works.

As a Platform Administrator, I Want to identify real time and past failures, In order to act on it and fix
the it.

As a Platform Administrator, I Want to visualize high level performances of the key HW components, In
order to understand real time and past load as well as forecast the load.

When landing on the MetalK8s microapp, an overview of the health and performances of the cluster is
displayed. The page is focusing on one single cluster i.e. one single site.

The page is divided in 3 sections:

22.7. MetalK8s UI adaptation 121

MetalK8s Documentation

• global health: the history of alerts and the current health of the system. If the health of the system
is degraded, when the Platform Administrator click on it, he is redirected to the alert page which
is automatically filtered on the active alerts.

• health of each platform entities: nodes, volumes, k8s master services, monitoring services, logging
service, ingress services and auth service. if one entity is not healthy, we can click on it and access
the list of active alerts associated with this entity, in the entity page.

• performances: several charts are displayed to show aggregated load, aggregated CPU usage, ag-
gregated RAM usage, aggregated IOPS usage and aggregated throughput for both CP and WP
networks. Ideally, Top 10 slowest disks are also displayed.

Nodes Page

As a Platform Administrator, I Want to have a list of the nodes making the cluster as well as detailed
information about each node, including node health, in order to identify nodes at risk.

The Nodes Page provides a list of all MetalK8s cluster nodes. For each node, one can see its status
and health (most severe active alert), MetalK8s version and roles. It is also from where the Platform
Administrator can expand the cluster (i.e. add a node) or access to advanced details about this node.

The list of MetalK8s cluster nodes can be displayed as a table in a first iteration but ideally, they are
displayed as cards and the nodes having issues are displayed first. In both cases, a search field is available
in order to filter the list of nodes we see in the table or as cards.

When the Platform Administrator click on a node, detailed information of this node is displayed in the
right zone of the page (could be bottom zone). That way, the Platform Administrator can focus on one
specific node while keeping the table or the cards as a way to navigate to another node.

Node Panel

When clicking on one node in the nodes page, it is possible to access various information about the node
through specific tabs.

High level Node information contains its name, its ip, its role, its status. Those High level information
are always visible, whatever tab is active.

• health

• volumes

122 Chapter 22. Architecture Documents

MetalK8s Documentation

• pods

The health is the tab displayed at first when accessing the node.

health

The list of active and past alerts as well as Key performance indicators over the last 7 days help the
Platform Administrator to understand the behaviour of this specific node. Alert table: Name, instance,
Severity, Message, Active Since KPIs charts: CPU, Load, Memory, IOPS, WP and CP IO bandwidth. The
list of KPI may be different for K8s master nodes and K8s worker nodes.

volumes

A table with the list of Volumes created on this node. For each volume, status, health, bounded /
available, type and size is available. When clicking on one Volume, it is possible to access various
information about this specific Volume in the Volume page.

pods

A table with the list of pods scheduled on this node. For each pod, status, health, age, namespace are
displayed.

Note: The Node Panel is also where the node creation form would be displayed when the platform
administrator clicks on Add Node.

Volumes Page

The Volumes page contains a table with all provisioned Volumes into the system. This view enables
to quickly identify the Volumes that are not yet bound to any pod or workload (those Volumes should
appear within a dedicated section if they are displayed as cards). It also gives an overview of all created
Volumes and their health and status. From the Volumes page it is possible to create a new Volume.

Volumes Table Columns:

• Name

• Node

• Storage class

22.7. MetalK8s UI adaptation 123

MetalK8s Documentation

• Bound: no or pod name if bound

• Status: Available of Failed (if Volume provisioning failed)

• Health: based on active alert existence

• Size (or storage capacity)

• Usage (%utilization) with some gauge bar renderer

• Creation time

• Action (delete/edit) with some icon renderer

Ideally we also want to have avg latency so that we can easily sort Volumes by latency in order to quickly
identify slowest disks. If it is too much information to put in the table, we can have another table with
only Name, Node, Health and latency information at the bottom of the main volumes table.

Note: One of the duty of the Platform Administrator is also to have a view of the available disks or
devices out of which we could create Volumes / PVs. The Platform Administrator will want to know
what are the available devices and if they are healthy. Also when a disk is not healthy, the Platform
Administrator will want this disk to be easily identified in the data center (i.e. blinking the disk)

Volume Panel

When clicking on one volume in the volumes page, it is possible to access various information about the
volume through specific tabs:

• All table infos

• Labels

• Type (block device or loop device)

• Pod name (if the volume is bound)

High level Volume information contains its name, the node it belongs to, its status, the pod it is bound
to. Those High level information are always visible, whatever tab is active.

• health

health

The list of active and past alerts as well as Key performance indicators over the last 7 days help the
Platform Administrator to understand the behaviour of this specific node. Alert table: Name, instance,
Severity, Message, Active Since KPIs charts: Usage (used, total, available), IOPS, IO Latency and IO
bandwidth.

124 Chapter 22. Architecture Documents

MetalK8s Documentation

Note: The Volume Panel is also where the volume creation form would be displayed when the platform
administrator clicks on Add Volume.

Cards vs Table for Nodes ad Volumes

Cards offer a more sexy way of presenting instances. We can even layout or group cards according to
some business logic criteria. However we can’t display lot of information or sort the cards. The table is
may be less fancy, however it helps the user to visualize lot of information at the same time, it usually
embeds out of the box sorting, filtering and top 10 capabilities. Also each cell can be rendered using
fancy components (an not only text).

MetalK8s services

As a reminder, the list of MetalK8s services are the following:

• k8s master

• bootstrap (OCI registry & salt)

• monitoring

• logging

• ingress

• auth

As a Platform Administrator, I want to make sure all MetalK8s services are running properly, in order to
make sure Solution instances can run properly and other admin users can perform their tasks.

As a Platform Administrator I want to understand on which nodes, each service sub components are
scheduled and what are the Volumes involved if any, In order to know HW entities that may have an
impact on it.

As an example, monitoring service is made of Prometheus to store all statistics as well as Alert Manager
to manage the alerts.

As a Platform Administrator I want to know if there are some actives alerts on a service and I want to
visualize the history of alerts In order to act on it to fix the issue.

22.7. MetalK8s UI adaptation 125

MetalK8s Documentation

As a Platform Administrator I want to to know how a service is behaving in terms of performances (CPU,
Load, Memory, IO), In order to anticipate potential failure events.

As a Platform Administrator, I want to scale up/down one service, In order to better handle the load.

The Platform Administrator may also need dedicated pages in order to configure the various services
(mainly thinking about alerting, auth and ingress)

Environment & solution Page

As a Platform administrator I want to create an MK8s environment (production / Staging / Test. . .) in
order to install the Scality data and storage management solutions

As a Storage administrator I want to add and manage solution lifecycle within an environment in order
to upgrade/downgrade the Scality data and storage management solutions components.

In the long term, those functionalities may need to be exposed outside of metalK8s, especially if we need
to deploy environment and solutions across multiple cluster or sites.

System Settings Page

No detailed functionalities for now. This could be from where the Platform Administrator would trigger
platform upgrade, downgrade, restore or backup.

Alerts Page

From this page the Platform Administrator can visualize all past and current alerts belonging to any
entity of the platform. When clicking on one specific alert, the user is redirected the specific entity /
health page on which the alert was fired.

Overall Navigation

126 Chapter 22. Architecture Documents

MetalK8s Documentation

22.8 Requirements

22.8.1 Deployment

Mimick Kubeadm

A deployment based on this solution must be as close to a kubeadm-managed deployment as possible
(though with some changes, e.g. non-root services). This should, over time, allow to actually integrate
kubeadm and its ‘business-logic’ in the solution.

Fully Offline

It should be possible to install the solution in a fully offline environment, starting from a set of ‘packages’
(format to be defined), which can be brought into the environment using e.g. a DVD image. It must be
possible to validate the provenance and integrity of such image.

Fully Idempotent

After deployment of a specific version of the solution in a specific configuration / environment, it shall
be possible to re-run this deployment, which should cause no changes to the system(s) involved.

Single-Server

It must be possible to deploy the solution on a single server (without any expectations w.r.t. availability,
of course).

Scale-Up from Single-Server Deployment

Given a single-server deployment, it must be possible to scale up to multiple nodes, including control
plane as well as workload plane.

Installation == Upgrade

There shall be no difference between ‘installation’ of the solution vs. upgrading a deployment, from a
logical point of view. Of course, where required, particular steps in the implementation may cause other
actions to be performed, or specific steps to be skipped.

Rolling Upgrade

When upgrading an environment, this shall happen in ‘rolling’ fashion, always cordoning, draining,
upgrading and uncordoning nodes.

22.8. Requirements 127

MetalK8s Documentation

Handle CentOS Kernel Memory Accounting

The solution must provide versions of runc and kubelet which are built to include the fixes for the kmem
leak issues found on CentOS/RHEL systems.

See:

• https://github.com/kubernetes/kubernetes/issues/61937

• https://github.com/kubernetes/kubernetes/pull/72114#issuecomment-454953077

• https://github.com/kubernetes/kubernetes/pull/72998#issuecomment-455512443

At-Rest Encryption

Data stored by Kubernetes must be encrypted at-rest (TBD which kind of objects).

Node Labels

Nodes in the cluster can be properly labeled, e.g. including availability zone information.

Vagrant

For evaluation purposes, it should be possible to set up a cluster in a Vagrant environment, in a fully
automated fashion.

22.8.2 Runtime

No Root

All services, including those managed by kubelet, must run as a non-root user, if possible. This user must
be provisioned as a system user/group. E.g., for the etcd service, despite being managed by kubelet using
a static Pod manifest, a suitable etcd user and group should be created on the system, /var/lib/etcd (or
similar) must be owned by this user/group, and the Pod manifest shall specify the etcd process must run
as said UID/GID.

SELinux

The solution may not require SELinux to be disabled or put in permissive mode.

It must, however, be possible to configure workload-plane nodes to be put in SELinux disabled or per-
missive mode, if applications running in the cluster can’t support SELinux.

Read-Only Containers

All containers as deployed by the solution must be fully immutable, i.e. read-only, with EmptyDir volumes
as temporary directories where required.

128 Chapter 22. Architecture Documents

https://github.com/kubernetes/kubernetes/issues/61937
https://github.com/kubernetes/kubernetes/pull/72114#issuecomment-454953077
https://github.com/kubernetes/kubernetes/pull/72998#issuecomment-455512443

MetalK8s Documentation

Environment

The solution must support CentOS 7.6.

CRI

The solution shall not depend on Docker to be available on the systems, and instead rely on either
containerd or cri-o. TBD which one.

OIDC

For ‘human’ authentication, the solution must integrate with external systems like Active Directory. This
may be achieved using OIDC.

For environments in which an external directory service is not available, static users can be configured.

22.8.3 Distribution

No Random Binaries

Any binary installed on a host system must be installed by a system package (e.g. RPM) through the
system package manager (e.g. yum).

Tagged Generated Files

Any file generated during deployment (e.g. configuration files) which are not required to be part of a
system package (i.e. they are installation-specific) should, if possible, contain a line (as a comment, a
preamble, . . .) describing the file was generated by this project, including project version (TBD, given
idempotency) and timestamp (TBD, given idempotency).

Container Images

All container (OCI) images must be built from a well-known base image (e.g. upstream CentOS images),
which shall be based on a digest and parametrized during build (which allows for easy upgrades of all
images when required).

During build, only ‘system’ packages (e.g. RPM) can be installed in the container, using the system
package manager (e.g. CentOS), to ensure the ability to validate provenance and integrity of all files
part of said image.

All containers should be properly labeled (TODO), and define suitable PORT and ENTRYPOINT directives.

22.8.4 Networking

Zero-Trust Networking: Transport

All over-the-wire communication must be encrypted using TLS.

22.8. Requirements 129

MetalK8s Documentation

Zero-Trust Networking: Identity

All over-the-wire communication must be validated by checking server identity and, where sensible,
validating client/peer identity.

Zero-Trust Networking: Certificate Scope

Certificates for different ‘realms’ must come from different CA chains, and can’t be shared across multiple
hosts.

Zero-Trust Networking: Certificate TTL

All issued certificates must have a reasonably short time-to-live and, where required, be automatically
rotated.

Zero-Trust Networking: Offline Root CAs

All root CAs must be kept offline, or be password-protected. For automatic certificate creation, inter-
mediate CAs (online, short/medium-lived, without password protection) can be used. These need to be
rotated on a regular basis.

Zero-Trust Networking: Host Firewall

The solution shall deploy a host firewall (e.g., using firewalld) and configure it accordingly (i.e., open
service ports where applicable).

Furthermore, if possible, access to services including etcd and kubelet should be limited, e.g. to etcd peers
or control-plane nodes in the case of kubelet.

Zero-Trust Networking: No Insecure Ports

Several Kubernetes services can be configured to expose an unauthenticated endpoint (sometimes for
read-only purposes only). These should always be disabled.

Zero-Trust Networking: Overlay VPN (Optional)

Encryption and mutual identity validation across nodes for the CNI overlay, bringing over-the-wire en-
cryption for workloads running inside Kubernetes without requiring a service mesh or per-application
TLS or similar, if required.

DNS

Network addressing must, primarily, be based on DNS instead of IP addresses. As such, certificate SANs
should not contain IP addresses.

130 Chapter 22. Architecture Documents

MetalK8s Documentation

Server Address Changes

When a server receives a different IP address after a reboot (but can still be discovered through an
updated DNS entry), it must be possible to reconfigure the deployment accordingly, with as little impact
as possible (i.e., requiring as little changes as possible). This related to the DNS section above.

For some services, e.g. keepalived configuration, IP addresses are mandatory, so these are permitted.

Multi-Homed Servers

A deployment can specify subnet CIDRs for various purposes, e.g. control-plane, workload-plane, etcd,
. . . A service part of a specific ‘plane’ must be bound to an address in said ‘plane’ only.

Availability of kube-apiserver

kube-apiserver must be highly-available, potentially using failover, and (optionally) made load-balanced.
I.e., in a deployment we either run a service like keepalived (with VRRP and a VIP for HA, and IPVS for
LB), or there’s a site-local HA/LB solution available which can be configured out-of-band.

E.g. for kube-apiserver, its /healthz endpoint can be used to validate liveness and readiness.

Provide LoadBalancer Services

The solution brings an optional controller for LoadBalancer services, e.g. MetalLB. This can be used to
e.g. front the built-in Ingress controller.

In environments where an external load-balancer is available, this can be omitted and the external load-
balancer can be integrated in the Kubernetes infrastructure (if supported), or configured out-of-band.

Network Configuration: MTU

Care shall be taken to set networking configuration, e.g. MTU sizes, properly across the cluster and the
services relying on it (e.g. the CNI).

Network Configuration: IPIP

Unless required, ‘plain’ networking must be used instead of tunnels, i.e., when using Calico, IPIP should
only be used in cross-subnet networking.

Network Configuration: BGP

In environments where routing configuration using BGP can be achieved, this should be feasible for
MetalLB-managed services, as well as Calico routing, in turn removing the need for IPIP usage.

IPv6

TODO

22.8. Requirements 131

MetalK8s Documentation

22.8.5 Storage

TODO

22.8.6 Batteries-Included

Similar to MetalK8s 1.x, the solution comes ‘batteries included’. Some aspects of this, including optional
HA/LB for kube-apiserver and LoadBalancer Services using MetalLB have been discussed before.

Metrics and Alerting: Prometheus

The solution comes with prometheus-operator, including ServiceMonitor objects for provisioned services,
using exporters where required.

Node Monitoring: node_exporter

The solution comes with node_exporter running on the hosts (or a DaemonSet, if the volume usage
restriction can be fixed).

Node Monitoring: Platform

The solution integrates with specific platforms, e.g. it deploys an HPE iLO exporter to capture these
metrics.

Node Monitoring: Dashboards

Dashboards for collected metrics must be deployed, ideally using some grafana-operator for extensibility
sake.

Logging

The solution comes with log aggregation services, e.g. fluent-bit and fluentd. Either a storage system
for said logs is deployed as part of the cluster (e.g. ElasticSearch with Kibana, Curator, Cerebro), or
the aggregation system is configured to ingest into an environment-specific aggregation solution, e.g.
Splunk.

Container Registry

To support fully-offline environments, this is required.

System Package Repository

See above.

132 Chapter 22. Architecture Documents

MetalK8s Documentation

Tracing Infrastructure (Optional)

The solution can deploy an OpenTracing-compatible aggregation and inspection service.

Backups

The solution ensures backups of core data (e.g. etcd) are made, at regular intervals as well as before a
cluster upgrade. These can be stored on the cluster node(s), or on a remote storage system (e.g. NFS
volume).

22.9 Solutions

22.9.1 Context

As for now, if we want to deploy applications on a MetalK8s cluster, it’s achievable by applying manifest
through kubectl apply -f manifest.yaml or using Helm with charts.

These approaches work, but for an offline environment, the user must first inject all the needed images
in containerd on every nodes. Plus, this requires some Kubernetes knowledge to be able to install an
application.

Moreover, there is no control on what’s deployed, so it is difficult to enforce certain practices or provide
tooling to ease deployment or lifecycle management of these applications.

We also want MetalK8s to be responsible for deploying applications to keep Kubernetes as an imple-
mentation detail for the end user and as so the user does not need any specific knowledge around it to
manage its applications.

22.9.2 Requirements

• Ability to orchestrate the deployment and lifecycle of complex applications.

• Support offline deployment, upgrade and downgrade of applications with arbitrary container im-
ages.

• Applications must keep running after a node reboot or a rescheduling of the containers.

• Check archives integrity, validity and authenticity.

• Handle multiple instance of an application with same or different versions.

• Enforce practices (Operator pattern).

• Guidelines for applications developers.

22.9.3 User Stories

Application import

As a cluster administrator, I want to be able to import an application archive using a CLI tool, to make
the application available for deployment.

22.9. Solutions 133

https://helm.sh/
https://containerd.io/

MetalK8s Documentation

Application deployment and lifecycle

As an application administrator, I want to manage the deployment and lifecycle (up-
grade/downgrade/scaling/configuration/deletion) of an application using either a UI or through simple
CLI commands (both should be available).

Multiple instances of an application

As an application administrator, I want to be able to deploy both a test and a prod environments for
an application, without collision between them, so that I can qualify/test the application on the test
environment.

Application development

As a developer, I want to have guidelines to follow to develop an application.

Application packaging

As a developer, I want to have documentation to know how to package an application.

Application validation

As a developer, I want to be able to know that a packaged application follows the requirements and is
valid using a CLI tool.

22.9.4 Design Choices

Solutions

What’s a Solution

It’s a packaged Kubernetes application, archived as an ISO disk image, containing:

• A set of OCI images to inject in MetalK8s image registry

• An Operator to deploy on the cluster

• A UI to manage and monitor the application (optional)

Solution Configuration

MetalK8s already uses a BootstrapConfiguration object, stored in /etc/metalk8s/bootstrap.yaml, to
define how the cluster should be configured from the bootstrap node, and what versions of MetalK8s are
available to the cluster.

In the same way, we will use a SolutionsConfiguration object, stored in /etc/metalk8s/solutions.
yaml, to declare which Solutions are available to the cluster, from the bootstrap node.

Here is how it will look:

apiVersion: solutions.metalk8s.scality.com/v1alpha1
kind: SolutionsConfiguration
archives:

- /path/to/solution/archive.iso
active:

solution-name: X.Y.Z-suffix (or 'latest')

134 Chapter 22. Architecture Documents

MetalK8s Documentation

In this configuration file, no explicit information about the contents of archives should appear. When
read by Salt at import time, the archive metadata will be discovered from the archive itself using a
manifest.yaml file at the root of the archive, with the following format:

apiVersion: solutions.metalk8s.scality.com/v1alpha1
kind: Solution
metadata:

annotations:
solutions.metalk8s.scality.com/display-name: Solution Name

labels: {}
name: solution-name

spec:
images:

- some-extra-image:2.0.0
- solution-name-operator:1.0.0
- solution-name-ui:1.0.0

operator:
image:
name: solution-name-operator
tag: 1.0.0

version: 1.0.0

This manifest will be read by a Salt external pillar module, which will permit the consumption of them
by Salt modules and states.

The external pillar will be structured as follows:

metalk8s:
solutions:

available:
solution-name:

- active: True
archive: /path/to/solution/archive.iso
manifest:

The content of Solution manifest.yaml
apiVersion: solutions.metalk8s.scality.com/v1alpha1
kind: Solution
metadata:

annotations:
solutions.metalk8s.scality.com/display-name: Solution Name

labels: {}
name: solution-name

spec:
images:

- some-extra-image:2.0.0
- solution-name-operator:1.0.0
- solution-name-ui:1.0.0

operator:
image:

name: solution-name-operator
tag: 1.0.0

version: 1.0.0
id: solution-name-1.0.0
mountpoint: /srv/scality/solution-name-1.0.0
name: Solution Name
version: 1.0.0

config:
Content of /etc/metalk8s/solutions.yaml (SolutionsConfiguration)
apiVersion: solutions.metalk8s.scality.com/v1alpha1
kind: SolutionsConfiguration
archives:

- /path/to/solutions/archive.iso
active:

(continues on next page)

22.9. Solutions 135

MetalK8s Documentation

(continued from previous page)

solution-name: X.Y.Z-suffix (or 'latest')
environments:

Fetched from namespaces with label
solutions.metalk8s.scality.com/environment
env-name:

Fetched from namespace annotations
solutions.metalk8s.scality.com/environment-description
description: Environment description
namespaces:
solution-a-namespace:

Data of metalk8s-environment ConfigMap from this namespace
config:

solution-name: 1.0.0
solution-b-namespace:

config: {}

Archive format

The archive will be packaged as an ISO image.

We chose the ISO image format instead of a compressed archive, like a tarball, because we wanted
something easier to inspect without having to uncompress it.

It could also be useful to be able to burn it on a CD, when being in an offline environment and/or with
strong security measures (read-only device that can be easily verified).

Solution archive will be structured as follows:

.
images

some_image_name
1.0.1

<layer_digest>
manifest.json
version

manifest.yaml
operator

| deploy
crds

some_crd_name.yaml
role.yaml

registry-config.inc

136 Chapter 22. Architecture Documents

MetalK8s Documentation

OCI Images registry

Every container images from Solution archive will be exposed as a single repository through Met-
alK8s registry. The name of this repository will be computed from the Solution manifest <metadata.
name>-<spec.version>.

Operator Configuration

Each Solution Operator needs to implement a --config flag which will be used to provide a yaml config-
uration file. This configuration will contain the list of available images for a Solution and where to fetch
them. This configuration will be formatted as follows:

apiVersion: solutions.metalk8s.scality.com/v1alpha1
kind: OperatorConfig
repositories:

<solution-version-x>:
- endpoint: metalk8s-registry/<solution-name>-<solution-version-x>
images:

- <image-x>:<tag-x>
- <image-y>:<tag-y>

<solution-version-y>:
- endpoint: metalk8s-registry/<solution-name>-<solution-version-y>
images:

- <image-x>:<tag-x>
- <image-y>:<tag-y>

Solution environment

Solutions will be deployed into an Environment, which is basically a namespace or a group of names-
paces with a specific label solutions.metalk8s.scality.com/environment, containing the Environment
name, and an annotation solutions.metalk8s.scality.com/environment-description, providing a hu-
man readable description of it:

apiVersion: v1
kind: Namespace
metadata:

annotations:
solutions.metalk8s.scality.com/environment-description: <env-description>

labels:
solutions.metalk8s.scality.com/environment: <env-name>

name: <namespace-name>

It allows to run multiple instances of a Solution, optionally with different versions, on the same cluster,
without collision between them.

Each namespace in an environment will have a ConfigMap metalk8s-environment deployed which will
describe what an environment is composed of (Solutions and versions). This ConfigMap will then be
consumed by Salt to deploy Solutions Operators.

This ConfigMap will be structured as follows:

apiVersion: solutions.metalk8s.scality.com/v1alpha1
kind: ConfigMap
metadata:

name: metalk8s-environment
namespace: <namespace-name>

data:
<solution-x-name>: <solution-x-version>
<solution-y-name>: <solution-y-version>

22.9. Solutions 137

MetalK8s Documentation

Environments will be created by a CLI tool or through the MetalK8s Environment page (both should be
available), prior to deploy Solutions.

Solution management

We will provide CLI and UI to import, deploy and handle the whole lifecycle of a Solution. These tools
are wrapper around Salt formulas.

Interaction diagram

We include a detailed interaction sequence diagram for describing how MetalK8s will handle user input
when deploying / upgrading Solutions.

138 Chapter 22. Architecture Documents

MetalK8s Documentation

22.9. Solutions 139

MetalK8s Documentation

22.9.5 Rejected design choices

CNAB

The Cloud Native Application Bundle (CNAB) is a standard packaging format for multi-component dis-
tributed applications. It basically offers what MetalK8s Solution does, but with the need of an extra
container with almost full access to the Kubernetes cluster and that’s the reason why we did choose to
not use it.

We also want to enforce some practices (Operator pattern) in Solutions and this is not easily doable using
it.

Moreover, CNAB is a pretty young project and has not yet been adopted by a lot of people, so it’s hard to
predict its future.

22.9.6 Implementation Details

Iteration 1

• Solution example, this is a fake application, with no other goal than allowing testing of MetalK8s
Solutions tooling.

• Salt formulas to manage Solution (deployment and lifecycle).

• Tooling around Salt formulas to ease Solutions management (simple shell script).

• MetalK8s UI to manage Solution.

• Solution automated tests (deployment, upgrade/downgrade, deletion, . . .) in post-merge.

Iteration 2

• MetalK8s CLI to manage Solutions (supersedes shell script & wraps Salt call).

• Integration into monitoring tools (Grafana dashboards, Alerting, . . .).

• Integration with the identity provider (Dex).

• Tooling to validate integrity & validity of Solution ISO (checksum, layout, valid manifests, . . .).

• Multiple CRD versions support (see #2372).

22.9.7 Documentation

In the Operational Guide:

• Document how to import a Solution.

• Document how to deploy a Solution.

• Document how to upgrade/downgrade a Solution.

• Document how to delete a Solution.

In the Developer Guide:

• Document how to monitor a Solution (ServiceMonitor, Service, . . .).

• Document how to interface with the identity provider (Dex).

• Document how to build a Solution (layout, how to package, . . .).

140 Chapter 22. Architecture Documents

https://cnab.io
https://cnab.io

MetalK8s Documentation

22.9.8 Test Plan

First of all, we must develop a Solution example, with at least 2 different versions, to be able to test the
whole feature.

Then, we need to develop automated tests to ensure feature is working as expected. The tests will have
to cover the following points:

• Solution installation and lifecycle (through both UI & CLI):

– Importing / removing a Solution archive

– Activating / deactivating a Solution

– Creating / deleting an Environment

– Adding / removing a Solution in / from an Environment

– Upgrading / downgrading a Solution

• Solution can be plugged to MetalK8s cluster services (monitoring, alerting, . . .).

22.10 Continuous Testing

This document will not describe how to write a test but just the list of tests that should be done and
when.

The goal is to:

• have day-to-day development and PRs merged faster

• have a great test coverage

Lets define 2 differents stages of continuous testing:

• Pre-merge: Run during development process on changes not yet merged

• Post-merge: Run on changes already approved and merged in development branches

22.10.1 Pre-merge

What should be tested in pre-merge on every branch used during development (user/*, feature/*,
improvement/*, bugfix/*, w/*). The pre-merge test should not long too much time (less than 40 minutes
is great) so we can’t test everything in pre-merge, we should only test building of the product and check
that product still usable.

• Building tests

– Build

– Lint

– Unit tests

• Installation tests

– Simple install RHEL

– Simple install CentOs + expansion

When merging several pull requests at the same time, given that we are on a queue branch (q/*), we may
require additional tests as a combination of several PRs could have a larger impact than all individual
PR:

• Simple upgrade/downgrade

22.10. Continuous Testing 141

MetalK8s Documentation

22.10.2 Post-merge

On each and every development/2.* branches we want to run complex tests, that take more time or
need more ressources than classic tests that run during pre-merge, to ensure that the current product
continues to work well.

Nightly

• Upgrade, downgrade tests:

– For previous development branch

e.g.: on development/2.x test upgrade from development/2.(x-1) and downgrade to
development/2.(x-1)

* Build branch development/2.(x-1) (or retrieve it if available)

* Tests:

· Single node test

· Complex deployment test

– For last released version of current minor

e.g.: on development/2.x when developing “2.x.y-dev” test upgrade from metalk8s-2.x.
(y-1) and downgrade to metalk8s-2.x.(y-1)

* Single node test

* Complex deployment test

– For last released version of previous minor

e.g.: on development/2.x when developing “2.x.y-dev” test upgrade from metalk8s-2.(x-1).
z and downgrade to metalk8s-2.(x-1).z where “2.(x-1).z” is the last patch released version
for “2.(x-1)” (z may be different from y)

* Single node test

* Complex deployment test

• Backup, restore tests:

– Environment with at least 3-node etcd cluster, destroy the bootstrap node and spawning a
new fresh node for restoration

– Environment with at least 3-node etcd cluster, destroy the bootstrap node and use one existing
node for restoration

• Solutions tests

Note: Complex deployment is (to be validated):

• 1 bootstrap

• 1 etcd and control

• 1 etcd and control and workload

• 1 workload and infra

• 1 workload

• 1 infra

142 Chapter 22. Architecture Documents

MetalK8s Documentation

Weekly

More complex tests:

• Performance/conformance tests

• Validation of contrib tooling (Heat, terraform, . . .)

• Installation of “real” Solution (Zenko, . . .)

• Long lifecycle metalk8s tests (several upgrade, downgrade, backup/restore, expansions, . . .)

22.10.3 Adaptive test plan

CI pre-merge may be more flexible by including some logic about the content of the changeset.

The goal here is to test only what needed according to the content of the commit.

For example:

• For a commit that changes uniquely documentation, we don’t need to run the entire installation
test suite but rather run tests related to documentation.

• For a commit touching upgrade orchestrate we want to test upgrade directly in pre-merge and not
wait Post merge build to get the test result.

22.11 Volume Management

22.11.1 Abstract

To be able to run stateful services (such as Prometheus, Zenko or Hyperdrive), MetalK8s needs the ability
to provide and manage persistent storage resources.

To do so we introduce the concept of MetalK8s Volume, using a Custom Resource Definition (CRD),
built on top of the existing concept of Persistent Volume from Kubernetes. Those Custom Resources
(CR) will be managed by a dedicated Kubernetes operator which will be responsible for the storage
preparation (using Salt states) and lifetime management of the backing Persistent Volume.

Volume management will be available from the Platform UI (through a dedicated tab under the Node
page). There, users will be able to create, monitor and delete MetalK8s volumes.

22.11.2 Scope

Goals

• support two kinds of Volume:

– sparseLoopDevice (backed by a sparse file)

– rawBlockDevice (using whole disk)

• add support for volume creation (one by one) in the Platform UI

• add support for volume deletion (one by one) in the Platform UI

• add support for volume listing/monitoring (show status, size, . . .) in the Platform UI

• expose raw block device (unformated) as Volume

• document how to create a volume

• document how to create a StorageClass object

• automated tests on volume workflow (creation, deletion, . . .)

22.11. Volume Management 143

MetalK8s Documentation

Non-Goals

• RAID support

• LVM support

• use an Admission Controller for semantic validation

• auto-discovery of the disks

• batch provisioning from the Platform UI

22.11.3 Proposal

To implement this feature we need to:

• define and deploy a new CRD describing a MetalK8s Volume

• develop and deploy a new Kubernetes operator to manage the MetalK8s volumes

• develop new Salt states to prepare and cleanup underlying storage on the nodes

• update the Platform UI to allow volume management

User Stories

Volume Creation

As a user I need to be able to create MetalK8s volume from the Platform UI.

At creation time I can specify the type of volume I want, and then either its size (for sparseLoopDevice)
or the backing device (for rawBlockDevice).

I should be able monitor the progress of the volume creation from the Platform UI and see when the
volume is ready to use (or if an error occured).

Volume Monitoring

As a user I should be able to see all the volumes existing on a specified node as well as their states.

Volume Deletion

As a user I need to be able to delete a MetalK8s volume from the Platform UI when I no longer need it.

The Platform UI should prevent me from deleting Volumes in use.

I should be able monitor the progress of the volume deletion from the Platform UI.

Component Interactions

User will create Metalk8s volumes through the Platform UI.

The Platform UI will create and delete Volume CRs from the API server.

The operator will watch events related to Volume CRs and PersistentVolume CRs owned by a Volume
and react in order to update the state of the cluster to meet the desired state (prepare storage when a
new Volume CR is created, clean up resources when a Volume CR is deleted). It will also be responsible
for updating the states of the volumes.

To do its job, the operator will rely on Salt states that will be called asynchronously (to avoid blocking
the reconciliation loop and keep a reactive system) through the Salt API. Authentication to the Salt API

144 Chapter 22. Architecture Documents

MetalK8s Documentation

will be done though a dedicated Salt account (with limited privileges) using credentials from a dedicated
cluster Service Account.

22.11. Volume Management 145

MetalK8s Documentation

22.11.4 Implementation Details

Volume Status

A PersistentVolume from Kubernetes has the following states:

• Pending: used for PersistentVolume that is not available

• Available: a free resource that is not yet bound to a claim

• Bound: the volume is bound to a claim

• Released: the claim has been deleted, but the resource is not yet reclaimed by the cluster

• Failed: the volume has failed its automatic reclamation

Similarly, our Volume object will have the following states:

• Available: the backing storage is ready and the associated PersistentVolume was created

• Pending: preparation of the backing storage in progress (e.g. an asynchronous Salt call is still
running).

• Failed: something is wrong with the volume (Salt state execution failed, invalid value in the CRD,
. . .)

• Terminating: cleanup of the backing storage in progress (e.g. an asynchronous Salt call is still
running).

Persistent block device naming

In order to have a reliable automount through kubelet, we need to create the underlying PersistentVol-
ume using a persistent name for the backing storage device. We use different strategies according to the
Volume type:

• sparseLoopDevice and rawBlockDevice with a filesystem: during the formatting, we set the
filesystem UUID to the Volume UUID and use dev/disk/by-uuid/<volume-uuid> as device path.

• sparseLoopDevice without filesystem: we create a GUID Partition Table on the sparse file and
create a single partition encompassing the whole device, setting the GUID of the partition to the
Volume UUID. We can then use /dev/disk/by-partuuid/<volume-uuid> as device path.

• rawBlockDevice without filesystem:

– the rawBlockDevice is a disk (e.g. /dev/sdb): we use the same strategy as above.

– the rawBlockDevice is a partition (e.g. /dev/sdb1): we change the partition GUID using the
Volume UUID and use /dev/disk/by-partuuid/<volume-uuid> as device path.

– The rawBlockDevice is a LVM volume: we use the existing LVM UUID and use /dev/disk/
by-id/dm-uuid-LVM-<lvm-uuid> as device path.

Operator Reconciliation Loop

Reconciliation Loop (Top Level)

When the operator receives a request, the first thing it does is to fetch the targeted Volume. If it doesn’t
exist, which happens when a volume is Terminating and has no finalizer, then there nothing more to do.

If the volume does exist, the operator has to check its semantic validity.

Once pre-checks are done, there are four cases:

1. the volume is marked for deletion: the operator will try to delete the volume (more details in
Volume Finalization).

146 Chapter 22. Architecture Documents

MetalK8s Documentation

2. the volume is stuck in an unrecoverable (automatically at least) error state: the operator can’t do
anything here, the request is considered done and won’t be rescheduled.

3. the volume doesn’t have a backing PersistentVolume (e.g. newly created volume): the operator
will deploy the volume (more details in Volume Deployment).

4. the backing PersistentVolume exists: the operator will check its status to update the volume’s
status accordingly.

Volume Deployment

To deploy a volume, the operator needs to prepare its storage (using Salt) and create a backing Persis-
tentVolume.

If the Volume object has no value in its Job field, it means that the deployment hasn’t started, thus the
operator will set a finalizer on the Volume object and then start the preparation of the storage using an
asynchronous Salt call (which gives a job ID) before rescheduling the request to monitor the evolution
of the job.

If we do have a job ID, then something is in progress and we monitor it until it’s over. If it has ended
with an error, we move the volume into a failed state.

Otherwise we make another asynchronous Salt call to get information (size, persistent path, . . .) on the
backing storage device (the polling is done exactly as described above).

If we successfully retrieved the storage device information, we proceed with the PersistentVolume cre-
ation, taking care of putting a finalizer on the PersistentVolume (so that its lifetime is tied to ours) and
setting ourself as the owner of the PersistentVolume.

Once the PersistentVolume is successfuly created, the operator will move the Volume to the Available
state and reschedule the request (the next iteration will check the health of the PersistentVolume just
created).

22.11. Volume Management 147

MetalK8s Documentation

Steady state

Once the volume is deployed, we update, with a synchronous Salt call, the deviceName status field at
each reconciliation loop iteration. This field contains the name of the underlying block device (as found
under /dev).

Volume Finalization

A Volume in state Pending cannot be deleted (because the operator doesn’t know where it is in the
creation process). In such cases, the operator will we reschedule the request until the volume becomes
either Failed or Available.

For volumes with no backing PersistentVolume, the operator will directly reclaim the storage on the
node (using an asynchronous Salt job) and upon completion it will remove the Volume finalizer to let
Kubernetes delete the object.

If there is a backing PersistentVolume, the operator will delete it (if it’s not already in a terminating
state) and watch for the moment when it becomes unused (this is done by rescheduling). Once the back-
ing PersistentVolume becomes unused, the operator will reclaim its storage and remove the finalizers
to let the object be deleted.

Volume Deletion Criteria

A volume should be deletable from the UI when it’s deletable from a user point of view (you can always
delete an object from the API), i.e. when deleting the object will trigger an “immediate” deletion (i.e.
the object won’t be retained).

Here are the few rules that are followed to decide if a Volume can be deleted or not:

• Pending states are left untouched: we wait for the completion of the pending action before decid-
ing which action to take.

• The lack of status information is a transient state (can happen between the Volume creation and
the first iteration of the reconciliation loop) and thus we make no decision while the status is unset.

• Volume objects whose PersistentVolume is bound cannot be deleted.

• Volume objects in Terminating state cannot be deleted because their deletion is already in
progress!

In the end, a Volume can be deleted in two cases:

148 Chapter 22. Architecture Documents

MetalK8s Documentation

• it has no backing PersistentVolume

• the backing PersistentVolume is not bound (Available, Released or Failed)

22.11.5 Documentation

In the Operational Guide:

• document how to create a volume from the CLI

• document how to delete a volume from the CLI

• document how to create a volume from the UI

• document how to delete a volume from the UI

• document how to create a StorageClass from the CLI (and mention that we should set Volume-
BindingMode to WaitForFirstConsumer)

In the Developper Documentation:

• document how to run the operator locally

• document this design

22.11.6 Test Plan

We should have automated end-to-end tests of the feature (creation and deletion), from the CLI and
maybe on the UI part as well.

22.12 Log Centralization

22.12.1 Context

MetalK8s value is to provide, out of the box, some services in order to ease the monitoring and operation
of the platform as well as workloads running on top of it.

It currently provides monitoring service, powered by Prometheus and AlertManager, in order to expose
metrics and alerts for both control-plane and workload-plane components as well as for cluster nodes
HW and OS.

The logs generated by the platform and the workloads constitute an essential piece of information when
it comes to understanding the root cause of a failure or a performance degradation. Because of the
distributed nature of MetalK8s and workloads running on top of it, the administrators need some tooling
to ease the analysis of near real time and past logs, from a central endpoint. As such these logs should
be stored on the platform, for a configurable period. Browsing the logs is accessible through an API and
a UI. The UI should ease correlation between logs and health/performance KPIs as well as alerts.

22.12. Log Centralization 149

MetalK8s Documentation

For organisations having their own Log centralization system (like Splunk or Elasticsearch), MetalK8s
should provide some documentation to guide the customer to deploy and configure its own log collection
agent.

The following requirements focus on application logs. Audit logs are not part of the requirements.

22.12.2 Requirements

Lightweight

A lightweight tool to store and expose logs is required in order to minimize the HW footprints (CPU,
RAM, Disks):

• limited history: Storing the logs for very large period (3 years) is not something metalK8s needs to
provide as a feature. This can be achieved using external log centralization system.

• stable ingestion: It is important to guarantee stable ingestion of the logs and less important to
guarantee stable performances when browsing/searching the logs. However, peak loads related to
complex logs queries should not impact the application workloads and deploying log storage and
search service on infra nodes might help achieving this isolation.

• stream indexing: It is not required to have automatic indexing of logs content. Instead, the log
centralization service should offer basic features to group/filter logs per tag/metadata defining the
log stream.

Accessible from a central UI/API

Platform Admin or Storage Admin can visualize logs from all containers in all namespaces as well as
journal logs, including (kubelet, containerd, salt-minion , kernel, initrd, services, etc . . .) in Grafana.
One can correlate logs and metrics or alerts in one single Grafana Dashboard. Browsing logs can be
achieved through a documented API in order to expose logs in MetalK8s UIs or other workloads UIs if
needed.

Persistence, Retention

Logs should be stored on a persistent storage. Platform Administrator can configure a max retention
period. Some automatic purging mechanism is triggered when logs are older than the retention period
or when the persistent storage is about to reach its capacity limit. Purging jobs are logged. A typical and
default retention period is of 2 weeks. A formula can be used by solution developers in order to properly
size the persistent storage for log centralization (cf documentation requirement).

Horizontally scalable (capacity and performance)

The Platform Administrator can scale the service in order to ingest/query and store more logs. It can be
because more workloads are running on the platform or because there is a need to keep bigger history
of logs.

Highly Available

Log collection, ingestion, storage and query services can be replicated in order to ensure that we can lose
at least one server in the cluster without impacting availability and reliability of the service.

Log Querying

Get all logs for a given period, node(s), pod regex, limited list of predefined labels and free keywords
text. Typical Zenko use case: collecting all logs across several components, related to a S3 uniq request.
Typical predefined labels are severity and namespace.

Log statistics (nice to have)

The Log centralization service also offers the ability to consume statistics about the logs like the number
of occurrences of one type of log during a certain period of time.

Monitorable/Observable service (health, performances and alerts)

The Platform Administrator can monitor capacity usage, ingestion rate, IOPS, latency and bandwidth of
the Log centralization service. He can also monitor the health of the service (i.e. if some active alerts

150 Chapter 22. Architecture Documents

MetalK8s Documentation

exist). He is notified through an alert notification when the service is degraded or unavailable. It can be
because the persistent storage is full or unhealthy or because the service does not manage to ingest logs
at the requested pace.

Here are few example of situations we would like to detect through those KPIs:

• a workload generating a crazy amount of logs

• a burst of ingested logs

• the log persistent storage getting full

• very slow api responses (impacting usability in Grafana dashboards)

• the ingestion of logs working too slowly

Performances (TBD)

Typical workloads can generate around 1000 logs per second per node.

22.12.3 User Stories

• As a Platform Administrator, I want to browse all MetalK8s containers logs (from all servers) from
a unique endpoint, in order to ease distributed K8s and MetalK8s services error investigation.

• As a Platform Administrator, I want to browse non container (kubelet, containerd, salt-minion,
cron) logs (from all servers) from a unique endpoint, in order to ease System error investigation.

• As a Storage Administrator, I want to browse all Solution instance containers logs (from all servers)
from a unique endpoint, in order to ease Solution instance error investigation.

• As a Platform Administrator, I want to push all containers logs to an external log centralization
system, In Order to archive it or aggregate it with other application logs.

(some other US extracted from Loki design doc)

• After receiving an alert on my service and drilling into the query associated with said alert, I want
to quickly see the logs associated with the jobs which produced those timeseries at the time of the
alert.

• After a pod or node disappears, I want to be able to retrieve logs from just before it died, so I can
diagnose why it died.

• After discovering an ongoing issue with my service, I want to extract a metric from some logs and
combine it with my existing time series data.

• I have a legacy job which does not expose metrics about errors - it only logs them. I want to build
an alert based on the rate of occurrences of errors in the log.

22.12.4 Deployment & Configuration

The log centralization storage service is scheduled on infra nodes. A platform Administrator can operate
the service as follows:

• add persistent storage

• configure max retention period

• adjust the number of replicas

• configure the system so that logs are pushed to an external log centralization service

• configure log service alerts (IOPS or ingestion rate, latency, bandwidth, capacity usage) i.e. adjust
the thresholds, silence some alerts or configure notifications.

22.12. Log Centralization 151

MetalK8s Documentation

Those operations are accessible from any host able to access the control plane network and are exposed
through the centralised cli framework.

When installing or upgrading MetalK8s, the log centralization service is automatically scheduled (as soon
as a persistent volume is provisioned) on one infra node.

All configurations of the log centralization service are part of the MetalK8s backup and remains un-
changed when performing an upgrade.

During future MetalK8s upgrades, the service stays available (when replicated).

22.12.5 Monitoring

• An alert rule is fired when the log centralization service is not healthy

• The log centralization service is not healthy when log storage is getting full or when service is not
able to ingest logs at the right pace.

• IOPS, bandwidth, latency, capacity usage KPIs are available in Prometheus

22.12.6 UI

Logs can be seen in Grafana. Log centralization monitoring information are displayed in the MetalK8s
UI overview page. A Grafana dashboard gathering health/performance KPIs, as well as alerts for log
centralization service is available when deploying/upgrading MetalK8s.

22.12.7 Components

Our Log Centralization system can be split into several components as follows:

152 Chapter 22. Architecture Documents

MetalK8s Documentation

Collector

The collector is responsible for processing logs from all the sources (files, journal, containers, . . .),
enriching the logs with metadata (labels) coming from parsing/filtering them (e.g. drop record on
regexp match), from the context (e.g. file path, host) or by querying external sources such as APIs, then
finally forwarding these logs to one or multiple distributors.

Distributor (Router)

The distributor is the component that receives incoming streams from the collectors, it validates them
(e.g. labels format, timestamp), then forwards them to the ingester. The distributor can also do pars-
ing/filtering on the streams to enrich them with metadata (labels), route to a specific ingester or even
drop them. It can as well do some buffering to avoid nagging the ingester with queries or to wait a bit in
case the ingester would be unresponsive for a moment.

22.12. Log Centralization 153

MetalK8s Documentation

Ingester (Storage)

The ingester serves as a buffer between distributor and storage, because writing large chunks of data is
more efficient than writing each event individually as it arrives. As such, a querier may need to ask an
ingester about what is in the buffer.

Querier

The querier interprets the queries it receives from clients and then asks the ingesters for the correspond-
ing data, then fallback on storage backend if not present in memory and returns it to the clients. It also
takes care of deduplication of data because of the replication.

22.12.8 Design Choices

To choose which solution fits best our needs, we did a benchmark of the shortlisted collectors to compare
their performances, on a 4 K8s nodes architecture (3 infra + 1 workload), with Loki as backend.

Our choice for the final design has been greatly motivated by these numbers, it represents the global
resources consumption for the whole log centralization stack (Loki included).

With 10k events/sec, composed of 10 distinct streams:

CPU avg in m RAM avg in MiB
promtail 975 928
fluent-bit 790 830
fluent-bit + fluentd 1311 1967

With 10k events/sec, composed of 1000 distinct streams:

CPU avg in m RAM avg in MiB
promtail 1292 1925
fluent-bit 1040 834
fluent-bit + fluentd 1447 1902

We can see that the Fluent Bit + Loki couple has the smallest impact on resources, but also that the
Fluent Bit + Fluentd + Loki architecture seems to offer a better scaling, with the possiblity of keeping
less pressure on workload nodes (Fluent Bit), relying more on dedicated infra nodes (Fluentd).

Fluent Bit + Loki

Fluent Bit

We choose Fluent Bit as the collector because it allows to scrape all the logs we need (journal & contain-
ers), enriches them with the Kubernetes API and it has a very low resources footprint.

Moreover, it supports multiple backend such as Loki, ES, Splunk, etc. at the same time, which is a very
important point if a user also wants to forward the logs to an external log centralization system (e.g.
long term archiving).

Check here for the official list of supported outputs.

154 Chapter 22. Architecture Documents

https://docs.fluentbit.io/manual/pipeline/outputs

MetalK8s Documentation

Loki

Loki has been chosen as the distributor, ingester & querier because, like Fluent Bit, it has a really small
impact on resources and is very cost effective regarding storage needs.

It also uses the LogQL syntax for queries, which is pretty close to what we already have with Prometheus
and PromQL, so it eases the integration in our tools.

22.12.9 Rejected Design Choices

Promtail + Loki

Promtail has been rejected because, even if it consumes very few resources, it can only integrate with
Loki and we need something more versatile, with the ability to interact with different distributors.

Fluentd + Loki

This architecture has been rejected because it means we need 1 Fluentd instance per node, which in-
creases a lot the resources consumption compared to other solutions.

Fluent Bit + Fluentd + Loki

We have considered this architecture as the Fluent Bit + Fluentd couple seems to be a standard in the
industry, but we didn’t find any reason of keeping Fluentd, apart for its large panel of plugins which we
don’t really need. Fluent Bit alone seems to be sufficient for what we want to achieve and adding an extra
Fluentd means more resources consumption and add unnecessary complexity in the log centralization
stack.

Logging Operator

Logging Operator seemed to be a good candidate for the implementation we choose, offering the ability
to deploy and configure Fluent Bit and Fluentd, but Fluentd is not optional and seems to have a central
place as most of the parsing/filtering is done by this one, which means a bigger footprint on the hardware
resources.

Logstash + Elasticsearch

This architecture is probably the most common one, but it has not been taken into consideration be-
cause we want to focus on having the minimum resources consumption and these components can really
hog RAM & CPU. Beats could be used as the log collector to reduce the impact of Logstash, but Elas-
ticsearch still consumes a lot of resources. Even if this solution offers a lot of powerful functionalities
(e.g. distributed storage, full-text indexing), we don’t really need them and want to focus on the smallest
hardware footprint.

22.12. Log Centralization 155

https://github.com/banzaicloud/logging-operator

MetalK8s Documentation

22.12.10 Implementation Details

Deployment

All the components will be deployed using Kubernetes manifests through Salt inside a metalk8s-logging
Namespace.

Fluent Bit

Fluent Bit will be deployed as a DaemonSet, because we need one collector on each node to be able to
collect logs from both the Kubernetes platform, the applications that run on top of it and all the system
daemons running alongside (e.g. Salt minion, Kubelet).

This DaemonSet and Fluent Bit configuration will be handled by the Fluent Bit Operator. For this, we
need to deploy the manifests found here, using our Salt Kubernetes renderer.

We will then need to also automatically deploy CRs with Fluent Bit default configuration, examples can
be found here.

Loki

Loki has 2 deployment mode, either as microservices (with distributor, ingester and querier in distinct
pods), either as a monolith. We must use the monolithic mode, because we use filesystem as the storage
backend and microservice mode does not support it.

Loki will be deployed as a StatefulSet as it needs PersistentVolume to write the logs. It will be running
only on infra nodes and we need at least 2 replicas of it (except on a single node platform), to ensure its
high availability.

As we already did for other components (e.g. Prometheus Operator), the manifests for Loki will be
generated statically by rendering the loki helm chart:

helm repo add loki https://grafana.github.io/loki/charts
helm repo update
helm fetch -d charts --untar loki/loki
./charts/render.py loki --namespace metalk8s-logging \

charts/loki.yaml charts/loki/ \
> salt/metalk8s/addons/loki/deployed/charts.sls

Loki Storage

Since we’re using filesystem to store Loki’s data, we have basically 2 ways for having multiple Loki
instances running at the same time, with the same set of data.

Either we do like Prometheus and we store everything on every instance of Loki, but it means we raise
the storage, RAM and CPU needs for each additionnal instance, either we use a new experimental feature
from Loki 1.5.0 where Loki ingesters use a hash ring and talk between them to route the queries to the
right one. This approach needs an external KV store to work such as etcd or Consul.

We choose to use the first approach as the second is not production ready and since we plan to only do
short term retention on Loki, the impact on storage will not be that much important. Moreover, it eases
the deployment and maintenance since there is not an extra component.

156 Chapter 22. Architecture Documents

https://github.com/kubesphere/fluentbit-operator/tree/master/manifests/setup
https://github.com/kubesphere/fluentbit-operator/tree/master/manifests/logging-stack
https://github.com/grafana/loki/tree/master/production/helm
https://github.com/grafana/loki/blob/master/docs/operations/storage/filesystem.md#new-and-very-experimental-in-150-horizontal-scaling-of-the-filesystem-store

MetalK8s Documentation

Configuration

Fluent Bit

Fluent Bit needs to be configured to scrape and handle properly journal and containers logs by default.

For containers logs, we want to add the following labels:

• node: the node it comes from

• namespace: the namespace the pod is running in

• instance: the name of the pod

• container: the name of the container

For journal we want these labels:

• node: the node it comes from

• unit: the name of the unit generating these logs

This configuration will also be customizable by the user to be able to add new routes (Output) to push
the log streams to.

This configuration will be done through various CRs provided by the Fluent Bit Operator:

• FluentBit: Defines Fluent Bit instances and its associated config

• FluentBitConfig: Select input/filter/output plugins and generates the final config into a Secret

• Input: Defines input config sections

• Filter: Defines filter config sections

• Output: Defines output config sections

For example, if a user wants to forward all Kubernetes logs to an external log centralization system (e.g.
Elasticsearch), he will need to define an Output CR as follows:

kind: Output
metadata:
name: my-output-to-external-es
namespace: my-namespace

spec:
match: kube.*
es:

host: 10.0.0.1
port: 9200

More details can be found on Fluent Bit Operator repository and manifest samples are here.

Loki

Loki’s configuration is stored as a Secret. we need to expose few parameters to the user for customization
(e.g. retention). Since we do not have Operator and CRs for Loki, we will use the CSC mechanism to pro-
vide the interface for customization, with a ConfigMap metalk8s-loki-config in the metalk8s-logging
Namespace. CSC is not as powerful as an Operator with CRs (no watch and reconciliation on resources
and need to run Salt state manually), but the Loki configuration will not change that much, probably
during deployment and to tune few parameters afterwards, so it does not worth to invest on an Operator.

The CSC ConfigMap will look like the followings:

22.12. Log Centralization 157

https://github.com/kubesphere/fluentbit-operator
https://github.com/kubesphere/fluentbit-operator/tree/master/manifests/logging-stack

MetalK8s Documentation

apiVersion: v1
kind: ConfigMap
metadata:
name: metalk8s-loki-config
namespace: metalk8s-logging

data:
config.yaml: |-

apiVersion: addons.metalk8s.scality.com
kind: LokiConfig
spec:
deployment:

replicas: 1
config:

auth_enabled: false
chunk_store_config:

max_look_back_period: 168h
ingester:

chunk_block_size: 262144
chunk_idle_period: 3m
chunk_retain_period: 1m
[...]

With default values fetched from a YAML file as it is already done for Dex, Alertmanager and Prometheus.

Monitoring

Prometheus

To monitor every services in our log centralization stack, we will need to deploy ServiceMonitor object
and expose the /metrics route of all these components. It will allow Prometheus Operator to configure
Prometheus and automatically start scraping these services. For Loki, this can be achieved by adding the
following configuration in its helm chart charts/loki.yaml values:

serviceMonitor:
enabled: true
additionalLabels:

release: "prometheus-operator"

For Fluent Bit, we will need to define a ServiceMonitor object:

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
labels:

app: fluent-bit
release: prometheus-operator

name: fluent-bit
namespace: metalk8s-logging

spec:
endpoints:
- path: /api/v1/metrics/prometheus

port: http-metrics
namespaceSelector:

matchNames:
- metalk8s-logging

selector:
matchLabels:

app: fluent-bit

We also need to define alert rules based on metrics exposed by these services. This is done deploying
new PrometheusRules object in metalk8s-logging Namespace:

158 Chapter 22. Architecture Documents

MetalK8s Documentation

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
labels:

release: prometheus-operator
name: loki.rules
namespace: metalk8s-logging

spec:
groups:
- name: loki.rules

rules: <RULES DEFINITION>

There is some recording and alert rules defined in the Loki repository that could be used as a base, then
we could enrich these rules later when we will have better operational knowledge.

Grafana

To be able to query logs from Loki, we need to add a Grafana datasource, this is done adding a ConfigMap
loki-grafana-datasource in metalk8s-monitoring Namespace as follows:

apiVersion: v1
kind: ConfigMap
metadata:
name: loki-grafana-datasource
namespace: metalk8s-monitoring
labels:

grafana_datasource: "1"
data:
loki-datasource.yaml: |-

apiVersion: 1
datasources:
- name: Loki
type: loki
access: proxy
url: http://loki.loki.svc.cluster.local:3100
version: 1

To display the logs we also need a dashboard, adding a ConfigMap loki-logs-dashboard in Namespace
metalk8s-monitoring:

apiVersion: v1
kind: ConfigMap
metadata:
name: loki-logs-dashboard
namespace: metalk8s-monitoring
labels:

grafana_dashboard: "1"
data:
loki-logs.json: <DASHBOARD DEFINITION>

For the dashboard we will use a view with a simple log panel and variables representing labels to filter
on. Since journal and kubernetes logs will not have the same labels, we could either have 2 distinct
dashboards or 2 log panels in the same. An example of what we want is Loki dashboard.

Note: The grafana_datasource: "1" and grafana_dashboard: "1" labels are what is used by the
Prometheus Operator to retrieve datasource and dashboard for Grafana, resources must be deployed in
metalk8s-monitoring namespace.

22.12. Log Centralization 159

https://github.com/grafana/loki/tree/master/production/loki-mixin
https://github.com/grafana/loki/blob/master/production/loki-mixin/dashboard-loki-logs.json

MetalK8s Documentation

Loki Volume Purge

Even with a max retention period, the logs could grow faster than what was expected and fill up the
volume. Since there is no retention based on size in Loki yet, we need to add some specific monitoring
(with prediction on volume usage) and alerting to ensure that an administrator will be warned if such
a case would happen. The alert message should be clear and provide an URL to a run book to help the
administrator resolving the issue.

To fix this issue, the administrator should purge oldest log chunk files from Loki volume, which can be
achieved by connecting to the pod and manually removing them. If the growth of logs is not something
transient, the administrator should also be advised to lower the retention period or replace the Loki
volume by a bigger one.

Iterations

Iteration 1

The goal is to have a working log centralization system, with logs accessible from Grafana:

• Deploy Fluent Bit and Loki

• Customization of Loki with CSC mechanisms

• Document customization of Loki through CSC

• Deploy Grafana datasource & dashboard

• Document the log centralization system (sizing, configuration, . . .)

• Simple pre-merge test to ensure the default log pipeline is working

Iteration 2

• Deployment of Fluent Bit with Fluent Bit Operator

• Document customization of Fluent Bit through CRs

• Define Prometheus record and alert rules

• Deploy Loki volumes purge mechanism (TBD)

• Display log centralization system status on the MetalK8s UI

• Post-merge tests to ensure customization is working (replicas, custom parser/filter rules, . . .)

22.12.11 Documentation

The sizing section in Introduction page is updated to include log centralization service impact. The sizing
rule takes in account the retention period, workloads expected log rate and workload predefined indices.
This rule is to be known by solution developers to properly size the service based on the workload
properties.

The Post Installation page is updated to indicate that persistent storage is needed for log centralization
service.

A new page should be added to explain how to operate the service and how to forward logs to an external
log centralization system.

The Cluster Monitoring page is updated to describe the log centralization service.

160 Chapter 22. Architecture Documents

MetalK8s Documentation

22.12.12 Test Plan

Log centralization system will be deployed by default with MetalK8s, so its deployment will automatically
be tested during pre-merge integration tests. However, we still need to develop specific pytest-bdd test
scenario to ensure that the default logging pipeline is fully functionnal, and run it during these pre-merge
tests. We will also add more complex tests in post-merge such as configuring specific parsers/filters,
scaling the system, etc.

22.12. Log Centralization 161

MetalK8s Documentation

162 Chapter 22. Architecture Documents

CHAPTER

TWENTYTHREE

HOW TO BUILD METALK8S

23.1 Requirements

In order to build MetalK8s we rely and third-party tools, some of them are mandatory, others are optional.

23.1.1 Mandatory

• Python 3.6 or higher: our buildchain is Python-based

• docker 17.03 or higher: to build some images locally

• skopeo, 0.1.19 or higher: to save local and remote images

• hardlink: to de-duplicate images layers

• mkisofs: to create the MetalK8s ISO

• implantisomd5 from the isomd5sum package: to embed an MD5 checksum in the generated ISO,
allowing for its integrity to be checked

23.1.2 Optional

• git: to add the Git reference in the build metadata

• Vagrant, 1.8 or higher: to spawn a local cluster (VirtualBox is currently the only provider sup-
ported)

• VirtualBox: to spawn a local cluster

• tox: to run the linters

23.1.3 Development

If you want to develop on the buildchain, you can add the development dependencies with pip install
-r requirements/build-dev-requirements.txt.

163

https://www.python.org/
https://www.docker.com/
https://github.com/containers/skopeo
https://jak-linux.org/projects/hardlink/
https://github.com/rhinstaller/isomd5sum
https://git-scm.com/
https://www.vagrantup.com/
https://www.virtualbox.org
https://pypi.org/project/tox

MetalK8s Documentation

23.2 How to build an ISO

Our build system is based on doit.

To build, simply type ./doit.sh.

Note that:

• you can speed up the build by spawning more workers, e.g. ./doit.sh -n 4.

• you can have a JSON output with ./doit.sh --reporter json

When a task is prefixed by:

• --: the task is skipped because already up-to-date

• .: the task is executed

• !!: the task is ignored.

23.2.1 Main tasks

To get a list of the available targets, you can run ./doit.sh list.

The most important ones are:

• iso: build the MetalK8s ISO

• lint: run the linting tools on the codebase

• populate_iso: populate the ISO file tree

• vagrant_up: spawn a development environment using Vagrant

By default, i.e. if you only type ./doit.sh with no arguments, the iso task is executed.

You can also run a subset of the build only:

• packaging: download and build the software packages and repositories

• images: download and build the container images

• salt_tree: deploy the Salt tree inside the ISO

23.3 Configuration

You can override some buildchain’s settings through a .env file at the root of the repository.

Available options are:

• PROJECT_NAME: name of the project

• BUILD_ROOT: path to the build root (either absolute or relative to the repository)

• VAGRANT_PROVIDER: type of machine to spawn with Vagrant

• VAGRANT_UP_ARGS: command line arguments to pass to vagrant up

• VAGRANT_SNAPSHOT_NAME: name of auto generated Vagrant snapshot

• DOCKER_BIN: Docker binary (name or path to the binary)

• GIT_BIN: Git binary (name or path to the binary)

• HARDLINK_BIN: hardlink binary (name or path to the binary)

• MKISOFS_BIN: mkisofs binary (name or path to the binary)

• SKOPEO_BIN: skopeo binary (name or path to the binary)

164 Chapter 23. How to build MetalK8s

http://pydoit.org/

MetalK8s Documentation

• VAGRANT_BIN: Vagrant binary (name or path to the binary)

• GOFMT_BIN: gofmt binary (name or path to the binary)

• OPERATOR_SDK_BIN: the Operator SDK binary (name or path to the binary)

Default settings are equivalent to the following .env:

export PROJECT_NAME=MetalK8s
export BUILD_ROOT=_build
export VAGRANT_PROVIDER=virtualbox
export VAGRANT_UP_ARGS="--provision --no-destroy-on-error --parallel --provider $VAGRANT_PROVIDER"
export DOCKER_BIN=docker
export HARDLINK_BIN=hardlink
export GIT_BIN=git
export MKISOFS_BIN=mkisofs
export SKOPEO_BIN=skopeo
export VAGRANT_BIN=vagrant
export GOFMT_BIN=gofmt
export OPERATOR_SDK_BIN=operator-sdk

23.4 Buildchain features

Here are some useful doit commands/features, for more information, the official documentation is here.

23.4.1 doit tabcompletion

This generates completion for bash or zsh (to use it with your shell, see the instructions here).

23.4.2 doit list

By default, ./doit.sh list only shows the “public” tasks.

If you want to see the subtasks as well, you can use the option --all.

% ./doit.sh list --all
images Pull/Build the container images.
iso Build the MetalK8s image.
lint Run the linting tools.
lint:shell Run shell scripts linting.
lint:yaml Run YAML linting.
[. . .]

Useful if you only want to run a part of a task (e.g. running the lint tool only on the YAML files).

You can also display the internal (a.k.a. “private” or “hidden”) tasks with the -p (or --private) options.

And if you want to see all the tasks, you can combine both: ./doit.sh list --all --private.

23.4. Buildchain features 165

http://pydoit.org/contents.html
http://pydoit.org/cmd_other.html#tabcompletion

MetalK8s Documentation

23.4.3 doit clean

You can cleanup the build tree with the ./doit.sh clean command.

Note that you can have fine-grained cleaning, i.e. cleaning only the result of a single task, instead of
trashing the whole build tree: e.g. if you want to delete the container images, you can run ./doit.sh
clean images.

You can also execute a dry-run to see what would be deleted by a clean command: ./doit.sh clean -n
images.

23.4.4 doit info

Useful to understand how tasks interact with each others (and for troubleshooting), the info command
display the task’s metadata.

Example:

% ./doit.sh info _build_rpm_packages:calico-cni-plugin/srpm

_build_rpm_packages:calico-cni-plugin/srpm

Build calico-cni-plugin-3.8.2-1.el7.src.rpm

status : up-to-date

file_dep :
- /home/foo/dev/metalk8s/_build/packages/redhat/calico-cni-plugin/SOURCES/calico-ipam-amd64
- /home/foo/dev/metalk8s/_build/packages/redhat/calico-cni-plugin/SOURCES/v3.8.2.tar.gz
- /home/foo/dev/metalk8s/packages/redhat/calico-cni-plugin.spec
- /home/foo/dev/metalk8s/_build/packages/redhat/calico-cni-plugin/SOURCES/calico-amd64

task_dep :
- _package_mkdir_rpm_root
- _build_builder:metalk8s-rpm-builder
- _build_rpm_packages:calico-cni-plugin/mkdir

targets :
- /home/foo/dev/metalk8s/_build/packages/redhat/calico-cni-plugin-3.8.2-1.el7.src.rpm

23.4.5 Wildcard selection

You can use wildcard in task names, which allows you to either:

• execute all the sub-tasks of a specific task: _build_rpm_packages:calico-cni-plugin/* will exe-
cute all the tasks required to build the package.

• execute a specific sub-task for all the tasks: _build_rpm_packages:*/get_source will retrieve the
source files for all the packages.

166 Chapter 23. How to build MetalK8s

CHAPTER

TWENTYFOUR

HOW TO RUN COMPONENTS LOCALLY

24.1 Running a cluster locally

24.1.1 Requirements

• the mandatory requirements for the buildchain

• Vagrant, 1.8 or higher: to spawn a local cluster (VirtualBox is currently the only provider sup-
ported)

• VirtualBox: to spawn a local cluster

24.1.2 Procedure

You can spawn a local MetalK8s cluster by running ./doit.sh vagrant_up.

This command will start a virtual machine (using VirtualBox) and:

• mount the build tree

• import a private SSH key (automatically generated in .vagrant)

• generate a boostrap configuration

• execute the bootstrap script to make this machine a bootstrap node

• provision sparse-file Volumes for Prometheus and Alertmanager to run on this bootstrap node

After executing this command, you have a MetalK8s bootstrap node up and running and you can connect
to it by using vagrant ssh bootstrap.

Note that you can extend your cluster by spawning extra nodes (up to 9 are already pre-defined in the
provided Vagrantfile) by running vagrant up node1 --provision. This will:

• spawn a virtual machine for the node 1

• import the pre-shared SSH key into it

You can then follow the cluster expansion procedure to add the freshly spawned node into your MetalK8s
cluster (you can get the node’s IP with vagrant ssh node1 -- sudo ip a show eth1).

167

https://www.vagrantup.com/
https://www.virtualbox.org

MetalK8s Documentation

24.2 Running the storage operator locally

24.2.1 Requirements

• Go (1.13 or higher) and operator-sdk (0.17 or higher): to build the Kubernetes Operators

• Mercurial: some Go dependencies are downloaded from Mercurial repositories.

24.2.2 Prerequisites

• You should have a running Metalk8s cluster somewhere

• You should have installed the dependencies locally with cd storage-operator; go mod download

24.2.3 Procedure

1. Copy the /etc/kubernetes/admin.conf from the bootstrap node of your cluster onto your local
machine

2. Delete the already running storage operator, if any, with kubectl --kubeconfig /etc/kubernetes/
admin.conf -n kube-system delete deployment storage-operator

3. Get the address of the Salt API server with kubectl --kubeconfig /etc/kubernetes/admin.conf
-n kube-system describe svc salt-master | grep :4507

4. Run the storage operator with:

cd storage-operator
export KUBECONFIG=<path-to-the-admin.cong-you-copied-locally>
export METALK8S_SALT_MASTER_ADDRESS=https://<ADDRESS-OF-SALT-API>
operator-sdk up local

24.3 Running the platform UI locally

24.3.1 Requirements

• Node.js, 14.16

24.3.2 Prerequisites

• You should have a running Metalk8s cluster somewhere

• You should have installed the dependencies locally with cd ui; npm install

24.3.3 Procedure

1. Connect to the boostrap node of your cluster, and execute the following command as root:

python - <<EOF
import subprocess
import json

output = subprocess.check_output([
'salt-call', 'pillar.get', 'metalk8s', '--out', 'json'

])

(continues on next page)

168 Chapter 24. How to run components locally

https://golang.org/
https://github.com/operator-framework/operator-sdk
https://www.mercurial-scm.org/
https://nodejs.org/en/

MetalK8s Documentation

(continued from previous page)

pillar = json.loads(output)['local']
output = subprocess.check_output([

'salt-call', 'grains.get', 'metalk8s:control_plane_ip', '--out', 'json'
])
control_plane_ip = json.loads(output)['local']
ui_conf = {

'url': 'https://{}:6443'.format(control_plane_ip),
'url_salt': 'https://{salt[ip]}:{salt[ports][api]}'.format(

salt=pillar['endpoints']['salt-master']
),
'url_prometheus': 'http://{prom[ip]}:{prom[ports][web][node_port]}'.format(

prom=pillar['endpoints']['prometheus']
),

}
print(json.dumps(ui_conf, indent=4))
EOF

2. Copy the output into ui/public/config.json.

3. Run the UI with cd ui; npm run start

24.3. Running the platform UI locally 169

MetalK8s Documentation

170 Chapter 24. How to run components locally

CHAPTER

TWENTYFIVE

DEPLOY NEWMETALK8S IMAGE

25.1 Upgrade a Platform with the latest dev build

25.1.1 Prerequisites

• A Platform already installed with all pod up & running

• A new metalk8s.iso image with a higher version

25.1.2 Procedure

If upgrading from a lower patch, minor or major version just follow the standard upgrade procedure

If upgrading from the same patch, minor and major version:

1. Upload the new metalk8s.iso on the bootstrap node

2. Locate how metalk8s.iso is mounted

grep metalk8s-2.9.0-alpha1 /etc/fstab
/root/metalk8s.iso /srv/scality/metalk8s-2.9.0-alpha1 iso9660 nofail,ro ␣
→˓ 0 0

3. Unmount the current metalk8s.iso

umount /srv/scality/metalk8s-2.9.0-alpha1

4. Copy the new metalk8s.iso in place of the old one

cp metalk8s.iso /root/metalk8s.iso

5. Mount the new metalk8s.iso

mount /root/metalk8s.iso /srv/scality/metalk8s-2.9.0-alpha1

6. Stop salt-master container on bootstrap node

crictl stop $(crictl ps -q --label io.kubernetes.container.name=salt-master --state␣
→˓Running)

7. Provision the new metalk8s ISO content

/srv/scality/metalk8s-2.9.0-alpha1/iso-manager.sh

8. Upgrade the cluster

/srv/scality/metalk8s-2.9.0-alpha1/upgrade.sh

171

MetalK8s Documentation

172 Chapter 25. Deploy new MetalK8s image

CHAPTER

TWENTYSIX

DEVELOPMENT

26.1 Developing Tests

26.1.1 Continuous Testing

Add a new test in the continuous integration system

When we refer to test, at continuous integration system level, it means an end-to-end task (building,
linting, testing, . . .) that requires a dedicated environment, with one or several machines (virtual or
container).

A test that only checks a specific feature of a classic MetalK8s deployment should be part of PyTest BDD
and not integrated as a dedicated stage in continuous integration system (e.g.: Testing that Ingress Pod
are running and ready is a feature of MetalK8s that should be tested in PyTest BDD and not directly as a
stage in continuous integration system).

How to choose between Pre-merge and Post-merge

The choice really depends on the goals of this test.

As a high-level view:

Pre-merge:

• Test is usually not long and could last less than 30 minutes.

• Test essential features of the product (installation, expansion, building, . . .).

Post-merge:

• Test last longer (more than 30 minutes).

• Test “non-essential” (not mandatory to have a working cluster) feature of the product (upgrade,
downgrade, solutions, . . .).

How to add a stage in continuous integration system

Continuous integration system is controlled by the eve/main.yml YAML file.

A stage is defined by a worker and a list of steps. Each stage should be in the stages section and triggered
by pre-merge or post-merge.

To know the different kind of workers available, all the builtin steps, how to trigger a stage, . . . please
refer to the eve documentation.

173

MetalK8s Documentation

A test stage in MetalK8s context

In MetalK8s context each test stage (eve stage that represents a full test) should generate a status file
containing the result of the test, either a success or a failure, and a JUnit file containing the result of the
test and information about this test.

To generate the JUnit file, each stage needs the following information:

• The name of the Test Suite this test stage is part of

• Section path to group tests in a Test Suite if needed (optional)

• A test name

Before executing all the steps of the test we first generate a failed result and at the end of the test we
generate a success result. So that the failed result get overridden by the success one if everything goes
well.

At the very end, the final status of a test should be uploaded no matter the outcome of the test.

To generate these results, we already have several helpers available.

Example:

Consider we want a new test named My Test which is part of the subsection My sub section of the
section My section in the test suite My Test Suite.

Note: Test, suite and class names are not case sensitive in eve/main.yml.

my-stage:
_metalk8s_internal_info:

junit_info: &_my_stage_junit_info
TEST_SUITE: my test suite
CLASS_NAME: my section.my sub section
TEST_NAME: my test

worker:
...
Worker informations
...

steps:
- Git: *git_pull
- ShellCommand: # Generate a failed final status

<<: *add_final_status_artifact_failed
env:

<<: *_env_final_status_artifact_failed
<<: *_my_stage_junit_info
STEP_NAME: my-stage

...
All test steps should be here !
...
- ShellCommand: # Generate a success final status

<<: *add_final_status_artifact_success
env:

<<: *_env_final_status_artifact_success
<<: *_my_stage_junit_info
STEP_NAME: my-stage

- Upload: *upload_final_status_artifact

174 Chapter 26. Development

MetalK8s Documentation

TestRail upload

To store results, we use TestRail which is a declarative engine. It means that all test suites, plans, cases,
runs, etc. must be declared, before proceeding to the results upload.

Warning: TestRail upload is only done for Post-merge as we do not want to store each and every
test result coming from branches with on-going work.

Do not follow this section if it’s not a Post-merge test stage.

The file eve/testrail_description_file.yaml contains all the TestRail object declarations, that will be
created automatically during Post-merge stage execution.

It’s a YAML file used by TestRail UI to describe the objects.

Example:

My Test Suite:
description: >-

My first test suite description
section:

My Section:
description: >-

My first section description
sub_sections:

My sub section:
description: >-

My first sub secttion description
cases:

My test: {}
sub_sections: <-- subsections can be nested as deep as needed

26.1.2 Salt Formulas Unit Testing

Introduction

This test suite aims to provide full coverage of Salt formulas rendering, intending to protect formula
designers from avoidable mistakes.

The tests are built using:

• pytest fixtures to simulate a real rendering context

• jinja2 as a library, to extract the Jinja AST and infer coverage from rendering passes (more ren-
derers may be covered in the future, if the need arises)

Goals / Non-goals

The tests written here are designed as unit tests, covering only the rendering functionality.

As such, a test will ensure that the render-time behaviour is tested (and all branches are covered), and
will verify the result’s validity.

Providing coverage information will be paramount, to build the desired protection (enforcing coverage
will also improve the confidence in newly created formulas).

These tests do not include integration or end-to-end evaluation of the formulas. Checking the validity of
the rendered contents is only a possibility, and not a primary goal for this test suite.

26.1. Developing Tests 175

MetalK8s Documentation

Implementation Plan

Generic Test Behaviour

Every rendering test will behave the same way:

1. Set up test fixtures

2. Read a formula

3. Render it from the desired context

4. Run some validity check(s) on the result

Configuration

Not all formulas are made the same, and some will only be renderable in specific contexts.

To handle this situation, we define a series of supported context options to customize the test fixtures,
and a configuration file for describing the context(s) supported by each formula.

Since we do not want to specify these for each and every formula, we define a configuration structure,
based on YAML, which builds on the natural hierarchy of our Salt formulas.

Each level in the hierarchy can define test cases, with the special _cases key. This key contains a map,
where keys are (partial) test case identifiers, and values are describing the context for each test case.
The root-level default_case defines the default test case applied to all tests, unless specified otherwise.
The default_case also serves as default configuration of any test case from which overrides are applied.

Assuming we have some options for specifying the target minion’s OS and its configured Volumes, here
is how we could use these in a configuration file:

default_case:
os: CentOS/7
volumes: none

map.jinja:
All cases defined here will use `volumes = "none"`
_cases:

"CentOS 7":
os: CentOS/7

"RHEL 7":
os: RHEL/7

"RHEL 8":
os: RHEL/8

"Ubuntu 18":
os: Ubuntu/18

volumes:
prepared.sls:

All cases defined here will use `os = "CentOS/7"`
_cases:

"No Volume to prepare":
volumes: none

"Only sparse Volumes to prepare":
volumes: sparse

"Only block Volumes to prepare":
volumes: block

"Mix of sparse and block Volumes to prepare":
volumes: mix

To further generate interesting test cases, each entry in the _cases map supports a _subcases key, which
then behaves as a basic _cases map. Assuming we have options for choosing a deployment architecture

176 Chapter 26. Development

MetalK8s Documentation

and for passing overrides to the available pillar, here is how it could look like:

_cases:
"Single node":

architecture: single-node
_subcases:

"Bootstrapping (no nodes in pillar)":
pillar_overrides:

metalk8s: { nodes: {} }
"Version mismatch":

pillar_overrides:
metalk8s:
nodes:

bootstrap:
version: 2.6.0

"Multi nodes":
architecture: multi-nodes
_subcases:

No additional option
"All minions match": {}
"Some minion versions mismatch":

pillar_overrides:
metalk8s:
nodes:

master-1:
version: 2.6.0

"All minion versions mismatch":
pillar_overrides:

metalk8s:
nodes:

bootstrap:
version: 2.6.0

master-1:
version: 2.6.0

master-2:
version: 2.6.0

The full configuration currently used is included below for reference.

Fixtures

Formulas require some context to be available to render. This context includes:

• Static information, like grains or pillar data

• Dynamic methods, through salt execution modules

• Extended Jinja functionality, through custom filters (likely provided by Salt)

The pytest fixtures defined with the tests should allow to setup a rendering context through composition.
Dynamic salt functions should attempt to derive their results from other static fixtures when possible.

26.1. Developing Tests 177

MetalK8s Documentation

Validity

Important: This is not yet implemented.

The result of a formula rendering shall be validated by the tests. As most formulas use the jinja|yaml
rendering pipeline, the first validity check implemented will only attempt to load the result as a YAML
data structure.

Later improvements may add:

• Structure validation (result is a map of string keys to list values, where each list contains either
strings or single-key maps)

• Resolution of include statements

• Validity of requisite IDs (require, onchanges, etc.)

Coverage

Important: This is not yet implemented.

Obtaining coverage information for non-Python code is not straightforward. In the context of Jinja
templates, some existing attempts can be found:

• jinja_coverage is not maintained, though should give useful pointers

• django_coverage_plugin is another interesting take, though likely too specific to Django

Given the above, we will need to create our own coverage plugin suited to our needs. Initial research
shows however that all the required information may not be easily accessed from the Jinja library. See:

• pallets/jinja#408

• pallets/jinja#674

• pallets/jinja#1130

Macros Testing

Important: This is not yet implemented.

Another aspect we can address with these tests is unit-testing of Jinja macros. This will ensure macros
behaviour remains stable over time, and that their intent is clearly expressed in test cases.

To perform such unit-testing, one may approach it as follows:

from jinja2 import Environment

env = Environment(loader=FilesystemLoader('salt'))
macro_tpl = env.get_template('metalk8s/macro.sls')

This is the exported `pkg_installed` macro
pkg_installed = macro_tpl.module.pkg_installed

178 Chapter 26. Development

https://github.com/MrSenko/coverage-jinja-plugin
https://github.com/nedbat/django_coverage_plugin
https://github.com/pallets/jinja/issues/408
https://github.com/pallets/jinja/pull/674
https://github.com/pallets/jinja/issues/1130

MetalK8s Documentation

Reference

Tests Configuration

The configuration of rendering tests can be found at salt/tests/unit/formulas/config.yaml, and is
included below for reference:

Default context options are listed here.
Please be mindful of the number of cases generated, as these will apply to
many formulas.
default_case:

os: CentOS/7
saltenv: metalk8s-2.8.0
minion_state: ready
architecture: single-node
volumes: none
mode: minion

metalk8s:
Use the special `_skip` keyword to omit rendering of a directory or formula
_skip: true

map.jinja:
_cases:

"CentOS 7":
os: CentOS/7

"RHEL 7":
os: RedHat/7

"RHEL 8":
os: RedHat/8

"Ubuntu 18":
os: Ubuntu/18

addons:
dex:
deployed:
service-configuration.sls:

_cases:
"No service configuration (default)": {}
"Existing service configuration (v1alpha2)":

k8s_overrides:
add:

- &dex_service_conf
kind: ConfigMap
apiVersion: v1
metadata:

name: metalk8s-dex-config
namespace: metalk8s-auth

data:
config.yaml: |-

apiVersion: addons.metalk8s.scality.com/v1alpha2
kind: DexConfig
spec: {}

"Old service configuration (v1alpha1)":
k8s_overrides:
add:

- <<: *dex_service_conf
data:
config.yaml: |-

apiVersion: addons.metalk8s.scality.com/v1alpha1
kind: DexConfig

(continues on next page)

26.1. Developing Tests 179

MetalK8s Documentation

(continued from previous page)

spec: {}
"Unknown service configuration version":

k8s_overrides:
add:

- <<: *dex_service_conf
data:

config.yaml: |-
apiVersion: addons.metalk8s.scality.com/v1
kind: DexConfig
spec: {}

logging:
loki:
deployed:

service-configuration.sls:
_cases:

"No existing configuration (default)": {}
"Service configuration exists":

k8s_overrides:
add:

- kind: ConfigMap
apiVersion: v1
metadata:

name: metalk8s-loki-config
namespace: metalk8s-logging

data:
config.yaml: |-

apiVersion: addons.metalk8s.scality.com
kind: LokiConfig
spec: {}

nginx-ingress-control-plane:
control-plane-ip.sls:

_cases:
"Bootstrap node is local minion (default)": {}
"Bootstrapping (errors in pillar)":

pillar_overrides:
metalk8s:

nodes:
_errors: ["Some error when retrieving nodes"]

"Bootstrapping (no nodes in pillar)":
pillar_overrides:

metalk8s:
nodes: []

"Bootstrap minion is not local":
_subcases:

"From master":
mode: master

"From minion":
mode: minion

pillar_overrides:
metalk8s:

ca:
minion: other-bootstrap

nodes:
bootstrap: # default grains.id

roles: [master, infra, etcd]
other-bootstrap:

roles: [ca, bootstrap]

prometheus-operator:

(continues on next page)

180 Chapter 26. Development

MetalK8s Documentation

(continued from previous page)

post-cleanup.sls:
_cases:

"No old rules (default)": {}
"Old rules to remove":

k8s_overrides:
add:

- kind: PrometheusRule
apiVersion: monitoring.coreos.com/v1
metadata:

name: example-old-rule
namespace: metalk8s-monitoring
labels:

app.kubernetes.io/part-of: metalk8s
Assume our current version is higher than this
metalk8s.scality.com/version: "2.4.0"

deployed:
service-configuration.sls:

_cases:
"No existing configuration (default)": {}
"Service configuration exists (only one of them)":

k8s_overrides:
add:

- kind: ConfigMap
apiVersion: v1
metadata:

name: metalk8s-prometheus-config
namespace: metalk8s-monitoring

data:
config.yaml: |-

apiVersion: addons.metalk8s.scality.com
kind: PrometheusConfig
spec: {}

solutions:
deployed:
configmap.sls:

_cases:
"No solution available (default)": {}
"Some solution available":

pillar_overrides:
metalk8s:

solutions:
available:
example-solution:

- &example_solution
archive: >-

/srv/scality/releases/example-solution-1.0.0.iso
name: example-solution
version: "1.0.0"
id: example-solution-1.0.0
active: true
mountpoint: /srv/scality/example-solution-1.0.0

container-engine:
containerd:
files:

50-metalk8s.conf.j2:
_cases:
"From metalk8s.container-engine.containerd.installed":

extra_context:

(continues on next page)

26.1. Developing Tests 181

MetalK8s Documentation

(continued from previous page)

containerd_args: [--log-level, info]
environment:

NO_PROXY: localhost,127.0.0.1,10.0.0.0/16
HTTP_PROXY: http://my-proxy.local
HTTPS_PROXY: https://my-proxy.local

kubernetes:
apiserver-proxy:

files:
apiserver-proxy.yaml.j2:

_cases:
"From metalk8s.kubernetes.apiserver-proxy.installed":

extra_context:
image_name: >-

metalk8s-registry-from-config.invalid/metalk8s-2.7.1/nginx:1.2.3
config_digest: abcdefgh12345
metalk8s_version: "2.7.1"

etcd:
files:

manifest.yaml.j2:
_cases:
"From metalk8s.kubernetes.etcd.installed":

extra_context:
name: etcd
image_name: >-

metalk8s-registry-from-config.invalid/metalk8s-2.7.1/etcd:3.4.3
command: [etcd, --some-arg, --some-more-args=toto]
volumes:

- path: /var/lib/etcd
name: etcd-data

- path: /etc/kubernetes/pki/etcd
name: etcd-certs
readOnly: true

etcd_healthcheck_cert: >-
/etc/kubernetes/pki/etcd/healthcheck-client.crt

metalk8s_version: "2.7.1"
config_digest: abcdefgh12345

files:
control-plane-manifest.yaml.j2:

_cases:
"From metalk8s.kubernetes.scheduler.installed":

extra_context:
name: kube-scheduler
image_name: >-

metalk8s-registry-from-config.invalid/metalk8s-2.7.1/kube-scheduler:1.18.5
host: "10.0.0.1"
port: http-metrics
scheme: HTTP
command:

- kube-scheduler
- --address=10.0.0.1
- --kubeconfig=/etc/kubernetes/scheduler.conf
- --leader-elect=true
- --v=0

requested_cpu: 100m
ports:

- name: http-metrics
containerPort: 10251

volumes:

(continues on next page)

182 Chapter 26. Development

MetalK8s Documentation

(continued from previous page)

- path: /etc/kubernetes/scheduler.conf
name: kubeconfig
type: File

metalk8s_version: "2.7.1"
config_digest: abcdefgh12345

kubelet:
files:

kubeadm.env.j2:
_cases:

"From metalk8s.kubernetes.kubelet.standalone":
extra_context:

options:
container-runtime: remote
container-runtime-endpoint: >-

unix:///run/containerd/containerd.sock
node-ip: "10.0.0.1"
hostname-override: bootstrap
v: 0

service-systemd.conf.j2:
_cases:

"From metalk8s.kubernetes.kubelet.configured":
extra_context:

kubeconfig: /etc/kubernetes/kubelet.conf
config_file: /var/lib/kubelet/config.yaml
env_file: /var/lib/kubelet/kubeadm-flags.env

service-standalone-systemd.conf.j2:
_cases:

"From metalk8s.kubernetes.kubelet.standalone":
extra_context:
env_file: /var/lib/kubelet/kubeadm-flags.env
manifest_path: /etc/kubernetes/manifests

mark-control-plane:
files:

bootstrap_node_update.yaml.j2.in:
_cases:

"From metalk8s.kubernetes.mark-control-plane.deployed":
extra_context:
node_name: bootstrap
cri_socket: unix:///run/containerd/containerd.sock

deployed.sls:
_cases:

"Default bootstrap target":
pillar_overrides:

bootstrap_id: bootstrap

node:
grains.sls:

_cases:
"Grains are already set":

minion_state: ready
"Grains are not yet set":

minion_state: new

orchestrate:
apiserver.sls:
_cases: &orch_base_cases

(continues on next page)

26.1. Developing Tests 183

MetalK8s Documentation

(continued from previous page)

"Single-node cluster":
mode: master
architecture: single-node

"Compact cluster": &orch_compact_arch
mode: master
architecture: compact

register_etcd.sls:
_cases:

"Target a new master node": &orch_target_master_node
<<: *orch_compact_arch
pillar_overrides: &pillar_orch_target_master_node

bootstrap_id: bootstrap
orchestrate:

node_name: master-1

deploy_node.sls:
_cases:

"Target a new master node":
<<: *orch_target_master_node
_subcases:

"Minion already exists (default)": {}
"Minion is new":

minion_state: new
"Skip drain":

pillar_overrides:
<<: *pillar_orch_target_master_node
orchestrate:

node_name: master-1
skip_draining: true

"Skip etcd role":
pillar_overrides:

<<: *pillar_orch_target_master_node
metalk8s:

nodes:
master-1:

skip_roles: [etcd]

etcd.sls:
_cases: *orch_base_cases

bootstrap:
accept-minion.sls:

_cases:
"From master":

mode: master
_subcases:

"Bootstrap minion is available":
pillar_overrides:

bootstrap_id: bootstrap
"Bootstrap minion is unavailable":

The mocks will only return known minions for `manage.up`
pillar_overrides:

bootstrap_id: unavailable-bootstrap

init.sls:
_cases:

"From master":
mode: master
_subcases:

FIXME: metalk8s.orchestrate.bootstrap.init does not handle an

(continues on next page)

184 Chapter 26. Development

MetalK8s Documentation

(continued from previous page)

unavailable minion yet
"Bootstrap node exists in K8s":

pillar_overrides:
bootstrap_id: bootstrap

"Bootstrap node does not exist yet":
pillar_overrides:

bootstrap_id: bootstrap
metalk8s:

nodes: {}

certs:
renew.sls:

_cases:
"From master":

mode: master
_subcases:

"No certificate to process":
pillar_overrides:

orchestrate:
certificates: []
target: bootstrap

"Some certificates to process":
pillar_overrides:

orchestrate:
certificates:

Client
- /etc/kubernetes/pki/etcd/salt-master-etcd-client.crt
Kubeconfig
- /etc/kubernetes/admin.conf
Server
- /etc/kubernetes/pki/apiserver.crt

target: bootstrap

downgrade:
init.sls:

_cases:
"Single node cluster":

architecture: single-node
_subcases:

"Destination matches (default)": {}
"Destination is lower than node version":

pillar_overrides:
metalk8s:

cluster_version: 2.7.3

"Compact cluster":
architecture: compact
_subcases: &downgrade_subcases

"Destination matches (default)": {}
"Destination is lower than all nodes":

pillar_overrides:
metalk8s:

cluster_version: 2.7.3
"Destination is lower than some nodes":

pillar_overrides:
metalk8s:

cluster_version: 2.7.3
nodes:

master-1:
version: 2.7.3

(continues on next page)

26.1. Developing Tests 185

MetalK8s Documentation

(continued from previous page)

"Standard cluster":
architecture: standard
_subcases: *downgrade_subcases

"Extended cluster":
architecture: extended
_subcases: *downgrade_subcases

precheck.sls:
_cases:

"Saltenv matches highest node version (default)":
saltenv: metalk8s-2.8.0
Use multi-node to verify handling of heterogeneous versions
architecture: compact
_subcases:

"All nodes already in desired version (default)": {}
"Desired version is too old":

pillar_overrides:
metalk8s:

cluster_version: 2.6.1
"Some nodes in desired version":

pillar_overrides:
metalk8s:

cluster_version: 2.7.3
nodes:

master-1:
version: 2.7.3

"Some nodes in older version than desired":
pillar_overrides:

metalk8s:
cluster_version: 2.7.3
nodes:

master-1:
version: 2.7.1

"Some node is not ready":
k8s_overrides: &k8s_patch_node_not_ready

edit:
- apiVersion: v1

kind: Node
metadata:

name: master-1
status:

conditions:
- type: Ready

status: false
reason: NodeHasDiskPressure

"Saltenv is higher than highest node version":
saltenv: metalk8s-2.9.0
architecture: single-node
pillar_overrides:

metalk8s:
cluster_version: 2.7.3
nodes:

bootstrap:
version: 2.8.0

"Saltenv is lower than highest node version":
saltenv: metalk8s-2.7.3
architecture: single-node
pillar_overrides:

(continues on next page)

186 Chapter 26. Development

MetalK8s Documentation

(continued from previous page)

metalk8s:
cluster_version: 2.7.3
nodes:

bootstrap:
version: 2.8.0

solutions:
deploy-components.sls:

_cases:
"Empty SolutionsConfig (default)": {}
"Errors in solutions pillar":

pillar_overrides:
metalk8s:

solutions:
_errors: ["Some error"]

"Specific Solution version to deploy":
pillar_overrides:

bootstrap_id: bootstrap
metalk8s:

solutions:
available: &base_example_available_solution

example-solution:
- id: example-solution-1.2.3

version: "1.2.3"
name: example-solution
display_name: Example Solution
mountpoint: /srv/scality/example-solution-1.2.3
manifest:

spec:
operator:

image:
name: example-operator
tag: "1.2.3"

images:
example-operator: "1.2.3"

config:
active:

example-solution: "1.2.3"

"Latest Solution version to deploy":
pillar_overrides:

bootstrap_id: bootstrap
metalk8s:

solutions:
available: *base_example_available_solution
config:

active:
example-solution: "latest"

"Some available Solution to remove":
pillar_overrides:

bootstrap_id: bootstrap
metalk8s:

solutions:
available: *base_example_available_solution
config:

active: {}

"Some desired Solution name is not available":
pillar_overrides:

(continues on next page)

26.1. Developing Tests 187

MetalK8s Documentation

(continued from previous page)

metalk8s:
solutions:

available: *base_example_available_solution
config:

active:
unknown-solution: "1.2.3"

"Some desired Solution version is not available":
pillar_overrides:

metalk8s:
solutions:

available: *base_example_available_solution
config:

active:
example-solution: "4.5.6"

import-components.sls:
_cases:

"Target an existing Bootstrap node":
pillar_overrides:

bootstrap_id: bootstrap

prepare-environment.sls:
_cases:

"Environment does not exist (default)":
pillar_overrides: &base_pillar_prepare_environment

orchestrate:
env_name: example-env

"Errors in pillar":
pillar_overrides:

<<: *base_pillar_prepare_environment
metalk8s:

solutions:
FIXME: likely this formula should only look at
pillar.metalk8s.solutions.environments._errors
_errors: ["Some error", "Some other error"]
environments:

_errors: ["Some error"]

files:
operator:

service_account.yaml.j2:
_cases:

"Example Solution v1.2.3 (see ../../prepare-environment.sls)":
extra_context: &base_context_solution_operator_files

solution: example-solution
version: "1.2.3"
namespace: example-env

configmap.yaml.j2:
_cases:

"Example Solution v1.2.3 (see ../../prepare-environment.sls)":
extra_context:

<<: *base_context_solution_operator_files
registry: metalk8s-registry-from-config.invalid

deployment.yaml.j2:
_cases:

"Example Solution v1.2.3 (see ../../prepare-environment.sls)":
extra_context:

(continues on next page)

188 Chapter 26. Development

MetalK8s Documentation

(continued from previous page)

<<: *base_context_solution_operator_files
repository: >-

metalk8s-registry-from-config.invalid/example-solution-1.2.3
image_name: example-operator
image_tag: "1.2.3"

role_binding.yaml.j2:
_cases:

"Example Solution v1.2.3 (see ../../prepare-environment.sls)":
extra_context:

<<: *base_context_solution_operator_files
role_kind: ClusterRole
role_name: example-role

upgrade:
init.sls:
_cases:

"Single node cluster":
architecture: single-node
_subcases:

"Destination matches (default)": {}
"Destination is higher than node version":

pillar_overrides:
metalk8s:

cluster_version: 2.9.0

"Compact cluster":
architecture: compact
_subcases: &upgrade_subcases

"Destination matches (default)": {}
"Destination is higher than all nodes":

pillar_overrides:
metalk8s:

cluster_version: 2.9.0
"Destination is higher than some nodes":

pillar_overrides:
metalk8s:

cluster_version: 2.9.0
nodes:

master-1:
version: 2.9.0

"Standard cluster":
architecture: standard
_subcases: *upgrade_subcases

"Extended cluster":
architecture: extended
_subcases: *upgrade_subcases

precheck.sls:
_cases:
"Saltenv matches destination version (default)":

saltenv: metalk8s-2.8.0
Use multi-node to verify handling of heterogeneous versions
architecture: compact
_subcases:

"All nodes already in desired version (default)": {}
"All nodes in older compatible version":

pillar_overrides:
metalk8s:

(continues on next page)

26.1. Developing Tests 189

MetalK8s Documentation

(continued from previous page)

nodes: &_upgrade_compatible_nodes
bootstrap: &_upgrade_compatible_node_version

version: 2.7.3
master-1: *_upgrade_compatible_node_version
master-2: *_upgrade_compatible_node_version

"Current version of some node is too old":
pillar_overrides:

metalk8s:
nodes:

<<: *_upgrade_compatible_nodes
master-1:

version: 2.6.1
"Current version of some node is newer than destination":

pillar_overrides:
metalk8s:

nodes:
<<: *_upgrade_compatible_nodes
master-1:

version: 2.9.0
"Some nodes in older version than desired":

pillar_overrides:
metalk8s:

cluster_version: 2.7.3
nodes:

master-1:
version: 2.7.1

"Some node is not ready":
k8s_overrides: *k8s_patch_node_not_ready

"Saltenv does not match destination version":
saltenv: metalk8s-2.7.3
architecture: single-node
pillar_overrides:

metalk8s:
cluster_version: 2.8.0

reactor:
certs:

renew.sls.in:
_cases:
"Sample beacon event":

extra_context:
data:

id: bootstrap
certificates:

- cert_path: /path/to/cert.pem
- cert_path: /path/to/other.pem

repo:
files:

apt.sources.list.j2:
_cases:
"From metalk8s.repo.debian":

extra_context:
type: deb
options:

trusted: "yes"
url: http://10.0.0.1:8080/metalk8s-2.7.1/debian/metalk8s-bionic
distribution: Ubuntu 18.04 Bionic Beaver
components: ["metalk8s-bionic"]

(continues on next page)

190 Chapter 26. Development

MetalK8s Documentation

(continued from previous page)

metalk8s-registry-config.inc.j2:
_cases:

"From metalk8s.repo.configured":
extra_context:

archives: &example_archives
metalk8s-2.7.1:

iso: /archives/metalk8s.iso
path: /srv/scality/metalk8s-2.7.1
version: "2.7.1"

nginx.conf.j2:
_cases:

"From metalk8s.repo.configured":
extra_context:

listening_address: "10.0.0.1"
listening_port: 8080

repositories-manifest.yaml.j2:
_cases:

"From metalk8s.repo.installed":
extra_context:

container_port: 8080
image: >-

metalk8s-registry-from-config.invalid/metalk8s-2.7.1/nginx:1.2.3
name: repositories
version: "1.0.0"
archives: *example_archives
solutions: {}
package_path: /packages
image_path: /images/
nginx_confd_path: /var/lib/metalk8s/repositories/conf.d
probe_host: "10.0.0.1"
metalk8s_version: "2.7.1"
config_digest: abcdefgh12345

debian.sls:
_cases:

"Ubuntu 18":
os: "Ubuntu/18"

redhat.sls:
_cases:

"CentOS 7":
os: CentOS/7

"RHEL 7":
os: RedHat/7

"RHEL 8":
os: RedHat/8

salt:
master:

certs:
salt-api.sls:
_cases:

"Minion is standalone (bootstrap)":
minion_state: standalone

"Minion is connected to master and CA (default)":
minion_state: ready

files:
master-99-metalk8s.conf.j2:
_cases:

(continues on next page)

26.1. Developing Tests 191

MetalK8s Documentation

(continued from previous page)

"From metalk8s.salt.master.configured":
extra_context:
debug: true
salt_ip: "10.0.0.1"
kubeconfig: /etc/salt/master-kubeconfig.conf
salt_api_ssl_crt: /etc/salt/pki/api/salt-api.crt
saltenv: metalk8s-2.7.1

salt-master-manifest.yaml.j2:
_cases:

"From metalk8s.salt.master.installed":
extra_context:

debug: true
image: salt-master
version: "3002.2"
archives:

metalk8s-2.7.1:
path: /srv/scality/metalk8s-2.7.1
iso: /archives/metalk8s-2.7.1
version: "2.7.1"

solution_archives:
example-solution-1-2-3: /srv/scality/example-solution-1.2.3

salt_ip: "10.0.0.1"
config_digest: abcdefgh12345
metalk8s_version: "2.7.1"

minion:
files:

minion-99-metalk8s.conf.j2:
_cases:
"From metalk8s.salt.minion.configured":

extra_context:
debug: true
master_hostname: "10.233.0.123"
minion_id: bootstrap
saltenv: metalk8s-2.7.1

solutions:
available.sls:

_cases:
See ./data/base_pillar.yaml
"Empty config (default)": {}
"Initial state (errors)":

pillar_overrides:
metalk8s:

solutions:
_errors: [Cannot read config file]
available: {}
config:

_errors: [Cannot read config file]

"New archive in config":
pillar_overrides:

metalk8s:
solutions:
available:

example-solution:
- *example_solution

config:
archives:

- /srv/scality/releases/example-solution-1.0.0.iso

(continues on next page)

192 Chapter 26. Development

MetalK8s Documentation

(continued from previous page)

- /srv/scality/releases/example-solution-1.2.0.iso

"Active archive removed from config":
pillar_overrides:

metalk8s:
solutions:

available:
example-solution:

- *example_solution
config:

archives: []

"Inactive archive removed from config":
pillar_overrides:

metalk8s:
solutions:

available:
example-solution:

- *example_solution
- archive: >-

/srv/scality/releases/example-solution-1.2.0.iso
name: example-solution
version: "1.2.0"
id: example-solution-1.2.0
active: false
mountpoint: /srv/scality/example-solution-1.2.0

config:
archives:

- /srv/scality/releases/example-solution-1.0.0.iso

utils:
httpd-tools:
installed.sls:
_cases:

"Debian family":
os: Ubuntu/18

"RedHat family":
os: CentOS/7

volumes:
unprepared.sls:

_cases: &volumes_cases
"No volume (default)":

volumes: none
_subcases: &volumes_subcases

"No target volume (default)": {}
"Target a single volume":

pillar_overrides:
volume: bootstrap-prometheus

"Errors in volumes pillar":
volumes: errors
_subcases: *volumes_subcases

"Only sparse loop volumes":
volumes: sparse
_subcases: *volumes_subcases

"Only raw block volumes":
volumes: block
_subcases: *volumes_subcases

"Mix of sparse and block volumes":
volumes: mix
_subcases: *volumes_subcases

(continues on next page)

26.1. Developing Tests 193

MetalK8s Documentation

(continued from previous page)

prepared.sls:
_cases:

<<: *volumes_cases
"Volumes pillar is set to None (bootstrap)":

volumes: bootstrap

26.2 Development Best Practices

26.2.1 Commit Best Practices

Pre-commit hooks

Some pre-commit hooks are defined to do some linting checks and also to format all Python code auto-
matically.

Those checks are also run in the CI pre-merge test suite to enforce code linting.

To enable pre-commit hook to run automatically when committing, install it as follows:

pip install pre-commit
pre-commit install

You can skip this pre-commit hook on a specific commit git commit --no-verify.

To run pre-commit manually, use tox:

tox -e pre-commit

It is also possible to run only a specific hook (e.g. for pylint tox -e pre-commit pylint).

How to split a change into commits

Why do we need to split changes into commits

This has several advantages amongst which are:

• small commits are easier to review (a large pull request correctly divided into commits is eas-
ier/faster to review than a medium-sized one with less thought-out division)

• simple commits are easier to revert (e866b01f0553/8208a170ac66)/cherry-pick (Pull request
#1641)

• when looking for a regression (e.g. using git bisect) it is easier to find the root cause

• make git log and git blame way more useful

194 Chapter 26. Development

https://github.com/scality/metalk8s/commit/e866b01f05535925e80da20aca00417904422433
https://github.com/scality/metalk8s/commit/8208a170ac66912ace018bcd00c058ad214d169b
https://github.com/scality/metalk8s/pull/1641
https://github.com/scality/metalk8s/pull/1641

MetalK8s Documentation

Examples

The golden rule to create good commits is to ensure that there is only one “logical” change per commit.

Cosmetic changes

Use a dedicated commit when you want to make cosmetic changes to the code (linting, whitespaces,
alignment, renaming, etc.).

Mixing cosmetics and functional changes is bad because the cosmetics (which tend to generate a lot
of diff/noise) will obscure the important functional changes, making it harder to correctly determine
whether the change is correct during the review.

Example (Pull request #1620):

• one commit for the cosmetic changes: 766f572e462c6933c8168a629ed4f479bb68a803

• one commit for the functional changes: 3367fabdefc0b35d34bf7cf2fb0d33ff81f9fd5a

Ideally, purely cosmetic changes which inflate the number of changes in a PR significantly, should go in
a separate PR

Refactoring

When introducing new features, you often have to add new helpers or refactor existing code. In such
case, instead of having single commit with everything inside, you can either:

1. first add a new helper: 29f49cbe9dfa

2. then use it in new code: 7e47310a8f20

Or:

1. first add the new code: 5b2a6d5fa498

2. then refactor the now duplicated code: ac08d0f53a83

Mixing unrelated changes

It is sometimes tempting to do small unrelated changes as you are working on something else in the
same code area. Please refrain to do so, or at least do it in a dedicated commit.

Mixing non-related changes into the same commit makes revert and cherry-pick harder (and understand-
ing as well).

The pull request #1846 is a good example. It tackles three issues at once: #1830 and #1831 (be-
cause they are similar) and #839 (because it was making the other changes easier), but it uses distincts
commits for each issue.

How to write a commit message

Why do we need commit messages

After comments in the code, commit messages are the easiest way to find context for every single line
of code: running git blame on a file will give you, for each line, the identifier of the last commit that
changed the line.

Unlike a comment in the code (which applies to a single line or file), a commit message applies to a
logical change and thus can provide information on the design of the code and why the change was

26.2. Development Best Practices 195

https://github.com/scality/metalk8s/issues/1620
https://github.com/scality/metalk8s/commit/766f572e462c6933c8168a629ed4f479bb68a803
https://github.com/scality/metalk8s/commit/3367fabdefc0b35d34bf7cf2fb0d33ff81f9fd5a
https://github.com/scality/metalk8s/commit/29f49cbe9dfa0b824c818d25d4a2f6965351e65d
https://github.com/scality/metalk8s/commit/7e47310a8f20fd49f0ad36707b20e6c2a53df638
https://github.com/scality/metalk8s/commit/5b2a6d5fa49815180a2effdd37cb58542e83b5a5
https://github.com/scality/metalk8s/commit/ac08d0f53a835a0b2bc61c1fe5b7317bf4d6550c
https://github.com/scality/metalk8s/pull/1846
https://github.com/scality/metalk8s/issues/1830
https://github.com/scality/metalk8s/issues/1831
https://github.com/scality/metalk8s/issues/839

MetalK8s Documentation

done. This makes commit messages a part of the code documentation and makes them helpful for other
developers to understand your code.

Last but not least: commit messages can also be used for automating tasks such as issue management.

Note that it is important to have all the necessary information in the commit message, instead of having
them (only) in the related issue, because:

• the issue can contain troubleshooting/design discussion/investigation with a lot of back and forth,
which makes hard to get the gist of it.

• you need access to an external service to get the whole context, which goes against one of biggest
advantage of the distributed SCM (having all the information you need offline, from your local
copy of the repository).

• migration from one tracking system to another will invalidate the references/links to the issues.

Anatomy of a good commit message

A commit is composed of a subject, a body and a footer. A blank line separates the subject from body
and the body from the footer.

The body can be omitted for trivial commit. That being said, be very careful: a change might seem trivial
when you write it but will seem totally awkward the day you will have to understand why you made it.
If you think your patch is trivial and somebody tells you he does not understand your patch, then your
patch is not trivial and it requires a detailed description.

The footer contains references for issue management (Refs, Closes, etc.) or other relevant annotations
(cherry-pick source, etc.). Optional if your commit is not related to any issue (should be pretty rare).

Subject

A good commit message should start with a short summary of the change: the subject line.

This summary should be written using the imperative mood and carry as much information as possible
while staying short, ideally under 50 characters (this is a goal, the hard limit is 72).

Subject topic and description shouldn’t start with a capital.

It is composed of:

• a topic, usually the name of the affected component (ui, build, docs, etc.)

• a slash and then the name of the sub-component (optional)

• a colon

• the description of the change

Examples:

• ci: use proxy-cache to reduce flakiness

• build/package: factorize task_dep in DEBPackage

• ui/volume: add banner when failed to create volume

If several components are affected:

• split your commit (preferred)

• pick only the most affected one

• entirely omit the component (happen for truly global change, like renaming licence to license
over the whole codebase)

196 Chapter 26. Development

MetalK8s Documentation

As for “what is the topic?”, the following heuristic works quite well for MetalK8s: take the name of
the top-level directory (ui, salt, docs, etc.) except for eve (use ci instead). buildchain could also be
shortened to build.

Having the topic in the summary line allows for faster peering over git log output (you can know what
the commit is about just by reading a few characters, not need to check the entire commit message or the
associated diff). It also helps the review process: if you have a big pull request affecting front-end and
back-end, front-end people can only review commits starting with ui (not need to read over the whole
diff, or to open each commit one by one in Github to see which ones are interesting).

Body

The body should answer the following questions:

• Why did you make this change? (is this for a new feature, a bugfix - then, why was it buggy? -,
some cleanup, some optimization, etc.). It is really important to describe the intent/motivation
behind the changes.

• What change did you make? Document what the original problem was and how it is being fixed
(can be omitted for short obvious patches).

• Why did you make the change in that way and not in another (mention alternate solutions consid-
ered but discarded, if any)?

When writing your message you must consider that your reader does not know anything about the code
you have patched.

You should also describe any limitations of the current code. This will avoid reviewer pointing them out,
and also inform future people looking at the code which tradeoffs were made at the time.

Lines must be wrapped at 72 characters.

Footer

Use references such as Refs, See, Fixes or Closes followed by an issue number to automate issue man-
agement.

In addition to the references, you can also provide the URLs (it will be quicker to access them from the
terminal).

Example:

topic: description

[commit message body]

Refs: #XXXXX
Refs: #YYYYY
Closes: #ZZZZZ
See: https://github.com/scality/metalk8s/issues/XXXXX
See: https://github.com/scality/metalk8s/issues/YYYYY
See: https://github.com/scality/metalk8s/issues/ZZZZZ

Footer can also contain a signature (git commit -s) or cherry-pick source (git cherry-pick -x).

26.2. Development Best Practices 197

https://help.github.com/en/github/managing-your-work-on-github/closing-issues-using-keywords

MetalK8s Documentation

Examples

Bad commit message

• Quick fix for service port issue: what was the issue? It is a quick fix, why not a proper fix?
What are the limitations?

• fix glitchs: as expressive and useful as ~fix stuff~

• Bump Create React App to v3 and add optional-chaining: Why? What are the benefits?

• Add skopeo & m2crypto to packages list: Why do we need them?

• Split certificates bootstrap between CA and clients: Why do we need this split? What is the
issue we are trying to solve here?

Note that none of these commits contain a reference to an issue (which could have been used as an
(invalid) excuse for the lack of information): you really have no more context/explanation than what is
shown here.

Good commit message

Commit b531290c04c4

Add gzip to nginx conf

This will decrease the size of the file the client need to download
In the current version we have ~7x improvement.
From 3.17Mb to 0.470Mb send to the client

Some things to note about this commit message:

• Reason behind the changes are explained: we want to decrease the size of the downloaded re-
sources.

• Results/effects are demonstrated: measurements are given.

Commit 82d92836d4ff

Use safer invocation of shell commands

Running commands with the "host" fixture provided by testinfra was done
without concern for quoting of arguments, and might be vulnerable to
injections / escaping issues.

Using a log-like formatting, i.e. `host.run('my-cmd %s %d', arg1, arg2)`
fixes the issue (note we cannot use a list of strings as with
`subprocess`).

Issue: GH-781

Some things to note about this commit message:

• Reasons behind the changes are explained: potential security issue.

• Solution is described: we use log-like formatting.

• Non-obvious parts are clarified: cannot use a list of string (as expected) because it is not supported.

198 Chapter 26. Development

MetalK8s Documentation

Commit f66ac0be1c19

build: fix concurrent build on MacOS

When trying to use the parallel execution feature of `doit` on Mac, we
observe that the worker processes are killed by the OS and only the
main one survives.

The issues seems related to the fact that:
- by default `doit` uses `fork` (through `multiprocessing`) to spawn its
workers

- since macOS 10.13 (High Sierra), Apple added a new security measure[1]
that kill processes that are using a dangerous mix of threads and
forks[2])

As a consequence, now instead of working most of the time (and failing
in a hard way to debug), the processes are directly killed.

There are three ways to solve this problems:
1. set the environment variable `OBJC_DISABLE_INITIALIZE_FORK_SAFETY=YES.`
2. don't use `fork`
3. fix the code that uses a dangerous mix of thread and forks

(1) is not good as it doesn't fix the underlying issue: it only disable
the security and we're back to "works most of the time, sometimes does
weird things"
(2) is easy to do because we can tell to `doit` to uses only threads
instead of forks.
(3) is probably the best, but requires more troubleshooting/time/

In conclusion, this commit implements (2) until (3) is done (if ever) by
detecting macOS and forcing the use of threads in that case.

[1]: http://sealiesoftware.com/blog/archive/2017/6/5/Objective-C_and_fork_in_macOS_1013.html
[2]: https://blog.phusion.nl/2017/10/13/why-ruby-app-servers-break-on-macos-high-sierra-and-what-
→˓can-be-done-about-it/

Closes: #1354

Some things to note about this commit message:

• Observed problem is described: parallel builds crash on macOS.

• Root cause is analyzed: OS security measure + thread/fork mix.

• Several solution are proposed: disable the security, workaround the problem or fix the root cause.

• Selection of a solution is explained: we go for the workaround because it is easy and faster.

• Extra-references are given: links in the footer gives more in-depth explanations/context.

Conclusion

When reviewing a change, do not simply look at the correctness of the code: review the commit message
itself and request improvements to its content. Look out for commits that can be divided, ensure that
cosmetic changes are not mixed with functional changes, etc.

The goal here is to improve the long term maintainability, by a wide variety of developers who may only
have the Git history to get some context so it is important to have a useful Git history.

26.2. Development Best Practices 199

MetalK8s Documentation

26.2.2 Python best practices

Import

Avoid from module_foo import symbol_bar

In general, it is a good practice to avoid the form from foo import bar because it introduces two distinct
bindings (bar is distinct from foo.bar) and when the binding in one namespace changes, the binding in
the other will not. . .

That’s also why this can interfere with the mocking.

All in all, this should be avoided when unecessary.

Rationale

Reduce the likelihood of surprising behaviors and ease the mocking.

Example

Good
import foo

baz = foo.Bar()

Bad
from foo import Bar

baz = Bar()

References

• Idioms and Anti-Idioms in Python

• unittest.mock documentation

Naming

Predicate functions

Functions that return a Boolean value should have a name that starts with has_, is_, was_, can_ or
something similar that makes it clear that it returns a Boolean.

This recommandation also applies to Boolean variable.

200 Chapter 26. Development

https://docs.python.org/3.1/howto/doanddont.html#from-module-import-name1-name2%0A
https://docs.python.org/3.6/library/unittest.mock.html#where-to-patch

MetalK8s Documentation

Rationale

Makes code clearer and more expressive.

Example

class Foo:
Bad.
def empty(self):

return len(self.bar) == 0

Bad.
def baz(self, initialized):

if initialized:
return

[. . .]

Good.
def is_empty(self):

return len(self.bar) == 0

Good.
def qux(self, is_initialized):

if is_initialized:
return

[. . .]

Patterns and idioms

Don’t write code vulnerable to “Time of check to time of use”

When there is a time window between the checking of a condition and the use of the result of that
check where the result may become outdated, you should always follow the EAFP (It is Easier to Ask for
Forgiveness than Permission) philosophy rather than the LBYL (Look Before You Leap) one (because it
gives you a false sense of security).

Otherwise, your code will be vulnerable to the infamous TOCTTOU (Time Of Check To Time Of Use)
bugs.

In Python terms:

• LBYL: if guard around the action

• EAFP: try/except statements around the action

Rationale

Avoid race conditions, which are a source of bugs and security issues.

26.2. Development Best Practices 201

MetalK8s Documentation

Examples

Bad: the file 'bar' can be deleted/created between the `os.access` and
`open` call, leading to unwanted behavior.
if os.access('bar', os.R_OK):

with open(bar) as fp:
return fp.read()

return 'some default data'

Good: no possible race here.
try:

with open('bar') as fp:
return fp.read()

except OSError:
return 'some default data'

References

• Time of check to time of use

Minimize the amount of code in a try block

The size of a try block should be as small as possible.

Indeed, if the try block spans over several statements that can raise an exception catched by the except,
it can be difficult to know which statement is at the origin of the error.

Of course, this rule doesn’t apply to the catch-all try/except that is used to wrap existing exceptions or
to log an error at the top level of a script.

Having several statements is also OK if each of them raises a different exception or if the exception carries
enough information to make the distinction between the possible origins.

Rationale

Easier debugging, since the origin of the error will be easier to pinpoint.

Don’t use hasattr in Python 2

To check the existence of an attribute, don’t use hasattr: it shadows errors in properties, which can be
surprising and hide the root cause of bugs/errors.

Rationale

Avoid surprising behavior and hard-to-track bugs.

202 Chapter 26. Development

https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

MetalK8s Documentation

Examples

Bad.
if hasattr(x, "y"):

print(x.y)
else:

print("no y!")

Good.
try:

print(x.y)
except AttributeError:

print("no y!")

References

• hasattr() – A Dangerous Misnomer

26.2. Development Best Practices 203

https://hynek.me/articles/hasattr/

MetalK8s Documentation

204 Chapter 26. Development

CHAPTER

TWENTYSEVEN

INTEGRATINGWITHMETALK8S

27.1 Introduction

With a focus on having minimal human actions required, both in its deployment and operation, MetalK8s
also intends to ease deployment and operation of complex applications, named Solutions, on its cluster.

This document defines what a Solution refers to, the responsibilities of each party in this integration, and
will link to relevant documentation pages for detailed information.

27.1.1 What is a Solution?

We use the term Solution to describe a packaged Kubernetes application, archived as an ISO disk image,
containing:

• A set of OCI images to inject in MetalK8s image registry

• An Operator to deploy on the cluster

• Optionally, a UI for managing and monitoring the application

For more details, see the following documentation pages:

• Solution archive guidelines

• Solution Operator guidelines

• (TODO) Solution UI guidelines

Once a Solution is imported in MetalK8s, a user can deploy one or more versions of the Solution Operator,
using either the MetalK8s Solution CLI (./solutions.sh) or the MetalK8s UI Environment page, into
separate Environments (namespaces). Using the Operator-defined CustomResource(s), the user can then
effectively deploy the application packaged in the Solution.

27.1.2 How is a Solution declared in MetalK8s?

MetalK8s uses a BootstrapConfiguration object, stored in /etc/metalk8s/bootstrap.yaml, to define
how the cluster should be configured from the bootstrap node, and what versions of MetalK8s are avail-
able to the cluster.

In the same vein, we use a SolutionsConfiguration object, stored in /etc/metalk8s/solutions.yaml,
to declare which Solutions are available to the cluster, from the bootstrap node.

Here is how it looks like:

apiVersion: metalk8s.scality.com/v1alpha1
kind: SolutionsConfiguration
archives:

- /solutions/storage_1.0.0.iso
- /solutions/storage_latest.iso

(continues on next page)

205

https://coreos.com/blog/introducing-operators.html

MetalK8s Documentation

(continued from previous page)

- /other_solutions/computing.iso
active:

storage: 1.0.0

There is no explicit information about what an archive contains. Instead, we want the archive itself to
contain such information (more details in Solution archive guidelines), and to discover it at import time.

Note that Solutions are imported based on this file contents, i.e. the images they contain are made
available in the registry and the Operator is deployed, however deploying subsequent application(s) is
left to the user, through manual operations or the Solution UI.

Note: Removing an archive path from the Solutions list effectively removes its related resources (CRDs,
images) from a MetalK8s cluster.

27.1.3 Responsibilities of each party

This section intends to define the boundaries between MetalK8s and the Solutions to integrate with, in
terms of “who is doing what?”.

Note: This is still a work in progress.

MetalK8s

MUST:

• Handle reading and mounting of the Solution ISO archive

• Provide tooling to deploy/upgrade a Solution’s CRDs and Operator

MAY:

• Provide tooling to verify signatures in a Solution ISO

• Expose management of Solutions in its own UI

Solution

MUST:

• Comply with the standard archive structure defined by MetalK8s

• If providing a UI, expose management of its Operator instances

• Handle monitoring of its own services (both Operator and application)

SHOULD:

• Use MetalK8s monitoring services (Prometheus and Grafana)

Note: Solutions can leverage the Prometheus Operator CRs for setting up the monitoring of their
components. For more information, see Monitoring and Solution Operator guidelines.

206 Chapter 27. Integrating with MetalK8s

https://github.com/coreos/prometheus-operator

MetalK8s Documentation

27.1.4 Interaction diagrams

We include a detailed interaction sequence diagram for describing how MetalK8s will handle user input
when deploying / upgrading Solutions.

Note: Open the image in a new tab to see it in full resolution.

27.1. Introduction 207

MetalK8s Documentation

208 Chapter 27. Integrating with MetalK8s

MetalK8s Documentation

27.2 Solution archive guidelines

To provide a predictable interface with packaged Solutions, MetalK8s expects a few criteria to be re-
spected, described below.

27.2.1 Archive format

Solution archives must use the ISO-9660:1988 format, including Rock Ridge and Joliet directory records.
The character encoding must be UTF-8. The conformance level is expected to be at most 3, meaning:

• Directory identifiers may not exceed 31 characters (bytes) in length

• File name + '.' + file name extension may not exceed 30 characters (bytes) in length

• Files are allowed to consist of multiple sections

The generated archive should specify a volume ID, set to {project_name} {version}.

Here is an example invocation of the common Unix mkisofs tool to generate such archive:

mkisofs
-output my_solution.iso
-R # (or "-rock" if available)
-J # (or "-joliet" if available)
-joliet-long
-l # (or "-full-iso9660-filenames" if available)
-V 'MySolution 1.0.0' # (or "-volid" if available)
-gid 0
-uid 0
-iso-level 3
-input-charset utf-8
-output-charset utf-8
my_solution_root/

27.2.2 File hierarchy

Here is the file tree expected by MetalK8s to exist in each Solution archive:

.
images

some_image_name
1.0.1

<layer_digest>
manifest.json
version

manifest.yaml
operator

| deploy
crds

some_crd_name.yaml
role.yaml

registry-config.inc

27.2. Solution archive guidelines 209

https://www.iso.org/obp/ui/#iso:std:iso:9660:ed-1:v1:en
https://en.wikipedia.org/wiki/Rock_Ridge
https://en.wikipedia.org/wiki/Joliet_(file_system)
https://tools.ietf.org/html/rfc3629
https://linux.die.net/man/8/mkisofs

MetalK8s Documentation

27.2.3 Product information

General product information about the packaged Solution must be stored in the manifest.yaml file,
stored at the archive root.

It must respect the following format (currently solutions.metalk8s.scality.com/v1alpha1, as specified
by the apiVersion value):

apiVersion: solutions.metalk8s.scality.com/v1alpha1
kind: Solution
metadata:

annotations:
solutions.metalk8s.scality.com/display-name: Solution Name

labels: {}
name: solution-name

spec:
images:

- some-extra-image:2.0.0
- solution-name-operator:1.0.0
- solution-name-ui:1.0.0

operator:
image:
name: solution-name-operator
tag: 1.0.0

version: 1.0.0

It is recommended for inspection purposes to include some annotations related to the build-time condi-
tions, such as the following (where command invocations should be statically replaced in the generated
manifest.yaml):

solutions.metalk8s.scality.com/build-timestamp: \
$(date -u +%Y-%m-%dT%H:%M:%SZ)

solutions.metalk8s.scality.com/git-revision: \
$(git describe --always --long --tags --dirty)

A simple script to generate this manifest can be found in MetalK8s repository examples/metalk8s-solution-
example/manifest.py, use it as follows:

./manifest.py --name "example-solution" \
--annotation "solutions.metalk8s.scality.com/build-timestamp" \
"$(date -u +%Y-%m-%dT%H:%M:%SZ)" \
--annotation "solutions.metalk8s.scality.com/build-host" "$(hostname)" \
--annotation "solutions.metalk8s.scality.com/development-release" "1" \
--annotation "solutions.metalk8s.scality.com/display-name" "Example Solution" \
--annotation "solutions.metalk8s.scality.com/git-revision" \
"$(git describe --always --long --tags --dirty)" \
--extra-image "base-server" "0.1.0-dev" \
--operator-image "example-solution-operator" "0.1.0-dev" \
--ui-image "example-solution-ui" "0.1.0-dev" \
--version "0.1.0-dev"

210 Chapter 27. Integrating with MetalK8s

MetalK8s Documentation

27.2.4 OCI images

MetalK8s exposes container images in the OCI format through a static read-only registry. This registry
is built with nginx, and relies on having a specific layout of image layers to then replicate the necessary
parts of the Registry API that CRI clients (such as containerd or cri-o) rely on.

Using skopeo, images can be saved as a directory of layers:

$ mkdir images/my_image
$ # from your local Docker daemon
$ skopeo copy --format v2s2 --dest-compress docker-daemon:my_image:1.0.0 dir:images/my_image/1.0.0
$ # from Docker Hub
$ skopeo copy --format v2s2 --dest-compress docker://docker.io/example/my_image:1.0.0 dir:images/my_
→˓image/1.0.0

The images directory should now resemble this:

images
my_image

1.0.0
53071b97a88426d4db86d0e8436ac5c869124d2c414caf4c9e4a4e48769c7f37
64f5d945efcc0f39ab11b3cd4ba403cc9fefe1fa3613123ca016cf3708e8cafb
manifest.json
version

Once all the images are stored this way, de-duplication of layers can be done with hardlinks, using the
tool hardlink:

$ hardlink -c images

A detailed procedure for generating the expected layout is available at NicolasT/static-container-
registry. The script provided there, or the one vendored in this repository (located at buildchain/
static-container-registry) can be used to generate the NGINX configuration to serve these im-
age layers with the Docker Registry API. MetalK8s, when deploying the Solution, will include the
registry-config.inc file provided at the root of the archive. In order to let MetalK8s control the mount-
point of the ISO, the configuration must be generated using the following options:

$./static-container-registry.py \
--name-prefix '{{ repository }}' \
--server-root '{{ registry_root }}' \
/path/to/archive/images > /path/to/archive/registry-config.inc.j2

Each archive will be exposed as a single repository, where the name will be computed as
<metadata:name>-<spec:version> from Product information, and will be mounted at /srv/scality/
<metadata:name>-<spec:version>.

Warning: Operators should not rely on this naming pattern for finding the images for their re-
sources. Instead, the full repository endpoints will be exposed to the Operator container through a
configuration file passed to the operator binary. See Solution Operator guidelines for more details.

The images names and tags will be inferred from the directory names chosen when using skopeo copy.
Using hardlink is highly recommended if one wants to define alias tags for a single image.

MetalK8s also defines recommended standards for container images, described in Container Images.

27.2. Solution archive guidelines 211

https://github.com/opencontainers/image-spec/blob/master/spec.md
https://www.nginx.com
https://github.com/containers/skopeo
http://man7.org/linux/man-pages//man1/hardlink.1.html
https://github.com/nicolast/static-container-registry
https://github.com/nicolast/static-container-registry

MetalK8s Documentation

27.2.5 Operator

See Solution Operator guidelines for how the /operator directory should be populated.

27.2.6 Web UI

27.3 Solution Operator guidelines

An Operator is a method of packaging, deploying and managing a Kubernetes application. A
Kubernetes application is an application that is both deployed on Kubernetes and managed
using the Kubernetes APIs and kubectl tooling.

—coreos.com/operators

MetalK8s Solutions are a concept mostly centered around the Operator pattern. While there is no explicit
requirements except the ones described below (see Requirements), we recommend using the Operator
SDK as it will embed best practices from the Kubernetes community.

27.3.1 Requirements

Files

All Operator-related files except for the container images (see OCI images) should be stored under /
operator in the ISO archive. Those files should be organized as follows:

operator
deploy

crds
some_crd.yaml

role.yaml

Most of these files are generated when using the Operator SDK.

Monitoring

MetalK8s does not handle the monitoring of a Solution application, which means:

• the user, manually or through the Solution UI, should create Service and ServiceMonitor objects
for each Operator instance

• Operators should create Service and ServiceMonitor objects for each deployed component they
own

The Prometheus Operator deployed by MetalK8s has cluster-scoped permissions, and is able to read the
aforementioned ServiceMonitor objects to set up monitoring of your application services.

Configuration

Solution Operator must implement a --config option which will be used by MetalK8s to provide various
useful information needed by the Operator, such as the endpoints for the container images. The given
configuration looks like:

apiVersion: solutions.metalk8s.scality.com/v1alpha1
kind: OperatorConfig
repositories:

<solution-version-x>:
- endpoint: metalk8s-registry/<solution-name>-<solution-version-x>

(continues on next page)

212 Chapter 27. Integrating with MetalK8s

https://coreos.com/operators/
https://github.com/operator-framework/operator-sdk/
https://github.com/operator-framework/operator-sdk/
https://kubernetes.io/
https://github.com/coreos/prometheus-operator

MetalK8s Documentation

(continued from previous page)

images:
- <image-x>:<tag-x>
- <image-y>:<tag-y>

<solution-version-y>:
- endpoint: metalk8s-registry/<solution-name>-<solution-version-y>
images:

- <image-x>:<tag-x>
- <image-y>:<tag-y>

In example, for an online installation without MetalK8s providing the repository, this configuration could
be:

apiVersion: solutions.metalk8s.scality.com/v1alpha1
kind: OperatorConfig
repositories:

1.0.0:
- endpoint: registry.scality.com/zenko
images:

- cloudserver:1.0.0
- zenko-quorum:1.0.0

- endpoint: quay.io/coreos
images:

- prometheus-operator:v0.34.0

This configuration allows the Operator to retrieve dynamically where the container images are stored for
each version of a given Solution.

Roles

Solution must ship a role.yaml file located in /operator/deploy directory. This file is a manifest which
declares all necessary Role and ClusterRole objects needed by the Operator. MetalK8s will take care
of deploying these objects, create a ServiceAccount named <solution_name>-operator and all needed
RoleBinding to bind these roles to this account.

Warning: Only Role and ClusterRole kinds are allowed in this file, the deployment of the Solution
fails if any other resource is found.

27.4 Deploying And Experimenting

Given the solution ISO is correctly generated, a script utiliy has been added to manage Solutions. This
script is located at the root of Metalk8s archive:

/srv/scality/metalk8s-2.9.0-alpha1/solutions.sh

27.4. Deploying And Experimenting 213

MetalK8s Documentation

27.4.1 Import a Solution

Importing a Solution will mount its ISO and expose its container images.

To import a Solution into MetalK8s cluster, use the import subcommand:

./solutions.sh import --archive </path/to/solution.iso>

The --archive option can be provided multiple times to import several Solutions ISOs at the same time:

./solutions.sh import --archive </path/to/solution1.iso> \
--archive </path/to/solution2.iso>

27.4.2 Unimport a Solution

To unimport a Solution from MetalK8s cluster, use the unimport subcommand:

Warning: Images of a Solution will no longer be available after an archive removal

./solutions.sh unimport --archive </path/to/solution.iso>

27.4.3 Activate a Solution

Activating a Solution version will deploy its CRDs.

To activate a Solution in MetalK8s cluster, use the activate subcommand:

./solutions.sh activate --name <solution-name> --version <solution-version>

27.4.4 Deactivate a Solution

To deactivate a Solution from Metalk8s cluster, use the deactivate subcommand:

./solutions.sh deactivate --name <solution-name>

27.4.5 Create an Environment

To create a Solution Environment, use the create-env subcommand:

./solutions.sh create-env --name <environment-name>

By default, it will create a Namespace named after the <environment-name>, but it can be changed, using
the --namespace option:

./solutions.sh create-env --name <environment-name> \
--namespace <namespace-name>

It’s also possible to use the previous command to create multiple Namespaces (one at a time) in this
Environment, allowing Solutions to run in different Namespaces.

214 Chapter 27. Integrating with MetalK8s

MetalK8s Documentation

27.4.6 Delete an Environment

To delete an Environment, use the delete-env subcommand:

Warning: This will destroy everything in the said Environment, with no way back

./solutions.sh delete-env --name <environment-name>

In case of multiple Namespaces inside an Environment, it’s also possible to only delete a single Names-
pace, using:

./solutions.sh delete-env --name <environment-name> \
--namespace <namespace-name>

27.4.7 Add a Solution in an Environment

Adding a Solution will deploy its Operator in the Environment.

To add a Solution in an Environment, use the add-solution subcommand:

./solutions.sh add-solution --name <environment-name> \
--solution <solution-name> --version <solution-version>

In case of non-default Namespace (not corresponding to <environment-name>) or multiple Namespaces in
an Environment, Namespace in which the Solution will be added must be precised, using the --namespace
option:

./solutions.sh add-solution --name <environment-name> \
--solution <solution-name> --version <solution-version> \
--namespace <namespace-name>

27.4.8 Delete a Solution from an Environment

To delete a Solution from an Environment, use the delete-solution subcommand:

./solutions.sh delete-solution --name <environment-name> \
--solution <solution-name>

27.4.9 Upgrade/Downgrade a Solution

Before starting, the destination version must have been imported.

Patch the Environment ConfigMap, with the destination version:

kubectl patch cm metalk8s-environment --namespace <namespace-name> \
--patch '{"data": {"<solution-name>": "<solution-version-dest>"}}'

Apply the change with Salt:

salt_container=$(
crictl ps -q \
--label io.kubernetes.pod.namespace=kube-system \
--label io.kubernetes.container.name=salt-master \
--state Running

)

(continues on next page)

27.4. Deploying And Experimenting 215

MetalK8s Documentation

(continued from previous page)

crictl exec -i "$salt_container" salt-run state.orchestrate \
metalk8s.orchestrate.solutions.prepare-environment \
pillar="{'orchestrate': {'env_name': '<environment-name>'}}"

216 Chapter 27. Integrating with MetalK8s

Part IV

Glossary

217

MetalK8s Documentation

Alertmanager The Alertmanager is a service for handling alerts sent by client applications, such as
Prometheus.

See also the official Prometheus documentation for Alertmanager.

API Server

kube-apiserver The Kubernetes API Server validates and configures data for the Kubernetes objects that
make up a cluster, such as Nodes or Pods.

See also the official Kubernetes documentation for kube-apiserver.

Bootstrap

Bootstrap node The Bootstrap node is the first machine on which MetalK8s is installed, and from where
the cluster will be deployed to other machines. It also serves as the entrypoint for upgrades of the
cluster.

ConfigMap A ConfigMap is a Kubernetes object that allows one to store general configuration informa-
tion such as environment variables in a key-value pair format. ConfigMaps can only be applied to
namespaces and once created, they can be updated automatically without the need of restarting
containers that depend on it.

See also the official Kubernetes documentation for ConfigMap.

Controller Manager

kube-controller-manager The Kubernetes controller manager embeds the core control loops shipped
with Kubernetes, which role is to watch the shared state from API Server and make changes to
move the current state towards the desired state.

See also the official Kubernetes documentation for kube-controller-manager.

etcd etcd is a distributed data store, which is used in particular for the persistent storage of API Server.

For more information, see etcd.io.

Environment An Environment is a namespace or group of namespaces with specific labels containing
one or more Solutions. It allows to run multiple instances of a Solution on the same cluster, without
collision between them.

Grafana Grafana is a service for analysing and visualizing metrics scraped by Prometheus.

For more information, see Grafana.

Kubeconfig A configuration file for kubectl, which includes authentication through embedded certifi-
cates.

See also the official Kubernetes documentation for kubeconfig.

Kubelet The kubelet is the primary “node agent” that runs on each cluster node.

See also the official Kubernetes documentation for kubelet.

Kube-state-metrics The kube-state-metrics service listens to the Kubernetes API server and generates
metrics about the state of the objects.

See also the official Kubernetes documentation for kube-state-metrics.

Loki Loki is a log aggregation system designed to be cost-effective, only indexing metadata (labels).

For more details, see Loki documentation.

Namespace A Namespace is a Kubernetes abstraction to support multiple virtual clusters backed by the
same physical cluster, providing a scope for resource names.

See also the official Kubernetes documentation for namespaces.

Node A Node is a Kubernetes worker machine - either virtual or physical. A Node contains the services
required to run Pods.

See also the official Kubernetes documentation for Nodes.

219

https://prometheus.io/docs/alerting/alertmanager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#understanding-configmaps-and-pods/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://etcd.io
https://grafana.com/docs/grafana/latest/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://github.com/kubernetes/kube-state-metrics/tree/master/docs/
https://grafana.com/docs/loki/latest/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/architecture/nodes/

MetalK8s Documentation

Node manifest The YAML file describing a Node.

See also the official Kubernetes documentation for Nodes management.

Operator A Kubernetes operator is an application-specific controller that extends the functionality of
the Kubernetes API to create, configure, and manage instances of complex applications.

See also the official Kubernetes documentation for Operator.

Pod A Pod is a group of one or more containers sharing storage and network resources, with a specifi-
cation of how to run these containers.

See also the official Kubernetes documentation for Pods.

Prometheus Prometheus serves as a time-series database, and is used in MetalK8s as the storage for all
metrics exported by applications, whether being provided by the cluster or installed afterwards.

For more details, see prometheus.io.

Prometheus Node-exporter The Prometheus node-exporter is an exporter for exposing hardware and
OS metrics read from the Linux Kernel. Users can typically obtain the following metrics; cpu,
memory, filesystem for each Kubernetes node.

or more details, see prometheus node-exporter.

SaltAPI SaltAPI is an HTTP service for exposing operations to perform with a Salt Master. The version
deployed by MetalK8s is configured to use the cluster authentication/authorization services.

See also the official SaltStack documentation for SaltAPI.

Salt Master The Salt Master is a daemon responsible for orchestrating infrastructure changes by man-
aging a set of Salt Minions.

See also the official SaltStack documentation for Salt Master.

Salt Minion The Salt Minion is an agent responsible for operating changes on a system. It runs on all
MetalK8s nodes.

See also the official SaltStack documentation for Salt Minion.

Scheduler

kube-scheduler The Kubernetes scheduler is responsible for assigning Pods to specific Nodes using a
complex set of constraints and requirements.

See also the official Kubernetes documentation for kube-scheduler.

Secret Kubernetes Secrets let you store and manage sensitive information, such as passwords, OAuth
tokens, and SSH keys.

See also the official Kubernetes documentation for Secrets.

Service A Kubernetes Service is an abstract way to expose an application running on a set of Pods as a
network service.

See also the official Kubernetes documentation for Services.

Taint Taints are a system for Kubernetes to mark Nodes as reserved for a specific use-case. They are used
in conjunction with tolerations.

See also the official Kubernetes documentation for taints and tolerations.

Toleration Tolerations allow to mark Pods as schedulable for all Nodes matching some filter, described
with taints.

See also the official Kubernetes documentation for taints and tolerations.

kubectl kubectl is a CLI interface for interacting with a Kubernetes cluster.

See also the official Kubernetes documentation for kubectl.

220

https://kubernetes.io/docs/concepts/architecture/nodes/#management
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://prometheus.io
https://prometheus.io/docs/guides/node-exporter
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#a-rest-api-for-salt
https://docs.saltstack.com/en/latest/topics/development/architecture.html#salt-master
https://docs.saltstack.com/en/latest/topics/development/architecture.html#salt-minion
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-scheduler/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/reference/kubectl/kubectl/

INDEX

A
Alertmanager, 219
API Server, 219

B
Bootstrap, 219
Bootstrap node, 219

C
ConfigMap, 219
Controller Manager, 219

E
Environment, 219
etcd, 219

G
Grafana, 219

K
kube-apiserver, 219
kube-controller-manager, 219
kube-scheduler, 220
Kube-state-metrics, 219
Kubeconfig, 219
kubectl, 220
Kubelet, 219

L
Loki, 219

N
Namespace, 219
Node, 219
Node manifest, 220

O
Operator, 220

P
Pod, 220
Prometheus, 220
Prometheus Node-exporter, 220

S
Salt Master, 220

Salt Minion, 220
SaltAPI, 220
Scheduler, 220
Secret, 220
Service, 220

T
Taint, 220
Toleration, 220

221

	I Installation
	Introduction
	Prerequisites
	Deployment of the Bootstrap node
	Enable IP-in-IP Encapsulation
	Cluster expansion
	Post-Installation Procedure
	Accessing Cluster Services
	Advanced guide
	Troubleshooting

	II Operation
	Cluster Monitoring
	Account Administration
	Cluster and Services Configurations
	Volume Management
	Cluster Upgrade
	Cluster Downgrade
	Disaster Recovery
	Solution Deployment
	Changing the hostname of a MetalK8s node
	Using the metalk8s-utils Image
	Listening Processes
	Troubleshooting

	III Developer Guide
	Architecture Documents
	How to build MetalK8s
	How to run components locally
	Deploy new MetalK8s image
	Development
	Integrating with MetalK8s

	IV Glossary
	Index

